銅鑼振動與聲音特性探討

學生姓名: 柯建宇林建坊 學 號: A9032038 A9032007 指導教授: 王?村 教授 國 立 屏 東 科 技 大 學 機 械 工 程 系

摘要

本文主要將針對中國樂器銅鑼進行實驗分 析與有限元素分析兩方面, 實驗量測分析上主 要分為兩類,第一類是實驗模態分析,目的在 求得銅鑼之模態參數(自然頻率、模態振型、 阻尼比)與頻率響應函數,第二類是聲音量測 分析,目的在求取銅鑼聲音頻譜,再由比較兩 者之差異處以瞭解銅鑼主要頻率,有限元素分 析方面主要是以軟體 ANSYS 5.5 版作分析, 有限元素分析方面主要可分為模態分析與簡 諧分析,模態分析主要目的在獲得銅鑼的理論 模態振型,簡諧分析主要是為了獲得理論的頻 率響應函數,模型驗證主要是將有限元素分析 所求得的模態振型,與實驗所獲得的模態振型 做比對已瞭解軟體分析的正確性,模型驗證結 果證實本實驗成功的建立了,聲音與銅鑼之間 的關聯性,進而瞭解銅鑼形狀對聲音的影響, 未來可大幅增加傳統手工製鑼的便利性。

一、前言

銅鑼為一典型中國傳統樂器,如雲鑼為一 系列大小不同之銅鑼所組成的,而至今未有對 其振動及聲音特性,有相同之分析,因此本專 題旨在以實驗及理論分析之方式,了解其聲音 特性。

聲音的分析方面,就過去的做法,僅以耳 聽的方式來判定音階的高低,現今科技一日千 里,因此在聲音的量測上,本實驗將利用頻譜 分析儀與其他實驗儀器搭配實,進行實驗,以 驗證分析,進而了解樂器的振動方式與聲音之 間的關係。

本實驗利用頻譜分析儀及有限元素分析 求出理論及實驗之模態參數和頻率響應函 數,進一步作模型驗證,以確定有限元素模型 是否能代表實體模型,再加上聲音的量測,討 論聲音特性與振動之間的關聯性。

二、問題定義及分析目標

2-1、問題定義

本文採用如圖 2-1-1 所示之中國傳統樂器 的高音銅鑼,採用 free-free 邊界進行有限元素 分析、實驗模態分析及聲音量測。模擬 free-free 邊界之方式為以橡皮繩懸掛於一支撐架,依銅 鑼之外形分割為 49 點進行實驗,如圖 2-1-2 所示。其銅鑼幾何形狀示意如圖 2-1-3所示, 銅鑼尺寸及材料性質如表 2-1-1、表 2-1-2 所 示。

2-2、分析目標

首先使用實驗模態分析求得的,銅鑼的實 驗模態參數及頻率響應函數,之後再應用分析 軟體 ANSYS 對銅鑼進行有限元素分析,已獲 得到理論之模態參數及頻率響應函數。此後再 將實驗模態分析與有限元素分析所各別求得 銅鑼的自然頻率、振型、頻率響應函數做比 對,進而確定有限元素模型之正確性。流程圖 如圖 2-2 所示。

銅鑼之聲音分析,藉由不同材質的衝擊鎚

的敲擊,將量測到之訊號傳入頻譜分析儀作分 析及探討。並以振動分析所得之模態參數與聲 音量測所得之聲音特性進行比對,以找出聲音 與振動之關聯性

利用模態驗證過之銅鑼有限元素模型進 行設計分析,作為其餘三種典型形狀的銅鑼分 析討論的基礎,以便探討銅鑼形狀設計時的需 求,及模態參數及聲音特性的變化和關聯性, 進而增加製鑼的便利性。

三、實驗模態分析(EMA)

本文的實驗架構及實驗設備如圖 3-1-1、 圖 3-1-2 所示,首先將衝擊鎚及加速度計以導 線經過電荷放大器分別接於 BK-3550 頻譜分 析儀之 A、B 輸入模組,再透過介面將頻譜分 析儀與安裝後處理軟體 CADA-PC之個人電腦 相互連接。本實驗的作動方式是以衝擊鎚敲擊 銅鑼,由感測器 - 加速度計,量取銅鑼之響應 訊號。經過放大器將訊號傳入頻譜分析儀,頻 譜分析儀對輸入模組之訊號作快速傳立葉轉 換,求得銅鑼之頻率響應函數和關聯性函數, 之後再將傳入電腦中之頻率響應函數以 CADA-PC軟體作曲線嵌合(Curve Fitting)。藉 此獲得模態參數。

實驗的第一步驟須完成 BK3550頻譜分析 儀之設定,如圖 3-1-3 所示,頻寬為 0~800Hz, 解析度為 800 條。實驗模態分析之方式為將銅 鑼畫分為 49 點,衝擊錘固定敲擊第 49 點,而 移動加速度計於銅鑼上的每一個測試點。完成 49 點測試後可得 49 組頻率響應函數,再將訊 號以 CADA-PC 軟體作曲線嵌合(Curve Fitting),以求得銅鑼的模態參數。

四、聲音量測分析

實驗設備架構方式如圖 4-1 所示,其所用 儀器型如圖 4-2 所示,首先將噪音計接於頻譜 分析儀之 channel A 輸入模組, channel B 輸入 模組則連接衝擊鎚, channel C 輸入模組則連 接加速度計,此三種輸入設備同時輸入訊號。

麥克風距離銅鑼的位置並無一定的標準,以實際量測到聲音值為準,且要大於背景 聲音,本實驗以距離銅鑼1 2cm 作基準。

實驗過程的第一步驟必須完成 Siglab 頻 譜分析儀的設定,頻寬的大小影響到訊號的取 樣時間,一般而言頻寬範圍越大則取樣的時間 就會越短,而本文在模態分析時是以頻寬 800Hz,作為討論重點,但在聲音量測分析則 頻寬以 2000Hz為主。

在銅鑼之聲音的分析方面,將分為兩大方 向來探討。其一為不同點的敲擊,其二為不同 材質的衝擊鎚敲擊。

不同點的敲擊

為了更方便分析五點之間的關聯性,將其 振動頻率聲音值用曲線圖畫出以利於分析比 較。

不同材質的衝擊鎚敲擊

為了進一步了解衝擊鎚與銅鑼聲音之間 的關係,以不同的材質敲擊,分別為布頭鎚、 鋼鎚、橡膠鎚進行實驗。

五、有限元素分析(FEA)

本文採用 ANSYS 軟體進行有限元素分 析。首先架構銅鑼之有限元素分析模型。由於 銅鑼為圓形曲面,且厚度遠小於直徑,故採用 薄殼線性元素 shell 架構。以極座標方式將 R 方向分 15 等份,?方向分 40 等份,如圖 5-1(a) (b)所示。因實體由一麻繩所懸吊,故有限元素 模型位移限制採用四周皆為 free-free 的方式。

由於楊氏係數及浦松比未知,而密度可由 體積及重量求得,故利用最佳化程式,輸入已 知的密度,而未知的楊氏係數和普松比則以文 獻中的參考數據給定上下限,以實驗模態之模 態參數為基準,求出較吻合之楊氏係數及普 松比。

首先進行模態分析(Modal Analysis), 求出 模態參數。模態參數的修正以最佳化進行。 再進行簡諧分析(Hormonic response

analysis),配合實驗之敲擊點,給定不同位置 之力量,由於模型本身非一平面,故給定之力 量需依照模型表面之傾斜角度給定不同方向 之力量,量測位置亦需依照其不同位置傾斜的 不同角度求出其不同方向的數據,進行數學運 算,求出頻率響應函數。

本文於有限元素分析時發現,於 ANSYS 軟體中架構出的銅鑼幾何形狀,因其分割元素 大小不同,因而使相同幾何形狀的銅鑼有限元 素模型,有著不相同的解,因此本文將於實驗 模態分析後,接著進行收斂性分析,使用實驗 模態分析的結果為基礎,以求得最適當的有限 元素模型,來完成模型驗證的工作。

六、收斂性分析

6-1 何謂收斂性分析

收斂性分析主要可分為 H-收斂與 P-收斂 兩部分。

H-收斂分析的目的在以不同的元素大小 網格化模型,將因此獲得不同的元素數目,以 及分析結果,由此即可獲得此模型在不同的網 格密度下,與所計算出之應力值之間的關係, 兩者之間的關係一般收斂性的範圍是在 5% 內,此關係可以提供分析人員決定該使用多少 元素來網格化模型。

P-收斂分析的目的在以相同性質的元素 做分析,但元素本身架構的方式是不盡相同 的,以此差異處進行分析,如 ANSYS 中的 Shell63 為線性殼元素有四個節點,而相同性 質的元素 Shell93 為二維殼元素有八個節點, 兩元素架構如圖 6-1(a),(b)所示。

6-2 Shell 元素使用於銅鑼分析時之分割原則

本文收斂性分析中的 H-收斂性分析,將 依照下列三點為元素分割的原則,來增加和減 少節點數,在中心圓盤面部分以方形元素形狀 為最理想。

注意到圓盤錐面上所分割出來的元素形 狀是否為理想形狀,如圖 6-2-1是一個理想的 元素形狀。

在圓盤最外圍的一圈分割數不需要太

高,以五層為定值不做變動,分割形狀以方形 為主,以便有效減少節點數,相對的也將減少 求解時間計算。

圖 6-2-2 中的 1 所指的是中心圓盤面, 2 所指的是圓盤錐面, 3 所指的是圓盤最外圍的一圈。

6-3 H-收斂性分析

本文此部分將作 H-收斂性分析,使用的 元素為 Shell63。

此次 H-收斂性分析目標在於,分析模態 振型與所發生的頻率的對應的關係,因此分析 比對的重點便著重於,幾個會因元素分割不良 就不會出現比較特殊的模態振型上,這也就是 應用於架構銅鑼有限元素模型時,訂出的的分 割原則的重點。

使用已現有分割完成的銅鑼有限元素模型為基礎,再根據 6-2 Shell 元素使用於銅鑼 分析時之分割原則,來做節點數的增加或減少 的調整。

由於此次模型的建構方式,是採用線段迴 轉 360度的方式建構而成,因此為了分析的方 便性將主要構圖線段使用 1 5 編號,如圖 6-3-1 所示,而銅鑼有限元素基礎模型的線段 分割大小為,線段1分十等分、線段2分十等 分、線段3分十等分、線段4十等分、線段5 分五等分,因為線段1與線段5並不會影響分 析的結果,因而分割等分量使用基礎模型的分 割量就可以了,因此增加與減少節點數便取決 與線段2、3、4,在收斂性分析時我們將由銅 鑼有限元素基礎模型,再分割出其餘五個有限 元素模型進行分析,不同分割量之銅鑼有限元 素模型請參照表 6-3,H收斂性分析結果繪製 於圖 6-3-3,圖 6-3-3 左方座標對為應頻率,下 方座標為有限元素模型編號,圖中符號如、

、 等,均為表示的是自然振動發生的頻 率,Mode line 是將各有限元素模型在分析時 具有相同的模態振型的頻率連成的線。 6-4 P-收斂性分析

本文主要使用的元素為 ANSYS 分析軟體 中的 Shell63 元素與 Shell93 元素,其架構方式 在 6-1 的第 3 點有概略的介紹。

架構有限元素模型的方式與 H-收斂性分 析相同,所以將直接利用 H-收斂性分析的有 限元素模型進行分析,使用的有限元素模型為 編號 C 的模型進行不同元素的比較。

P 收斂性分析結果繪製於圖 6-4-1,圖中 編號 G為 Shell63元素,編號 T為 Shell93,左 方座標為對應頻率,下方座標對應的是有限元 素模型編號,符號如 、 等,均為表示 的是自然振動發生的頻率,Mode line 是將各 有限元素模型在分析時具有相同的模態振型 的頻率所連成的線。

七、四種銅鑼的典型幾何形狀與模態

振型之關係

7-1 四種典型銅鑼的幾何形狀

本文將四種銅鑼的典型形狀分別編號為 A、B、C、D。A 銅鑼幾何形狀示意圖如 圖 7-1(a)所示、B 銅鑼幾何形狀示意圖如 圖 7-1(b)所示、C 銅鑼幾何形狀示意圖如 圖 7-1(c)所示、D 銅鑼幾何形狀示意圖如 圖 7-1(d)所示,圖中 *t*=0.0014m, *D2*=0.145m, *H1*=0.04m, *D1*=0.315m, *H2*=0.018m, *SR1* = 0.022m, *SR2* = 0.5m。

四種典型形狀銅鑼均假設為均質材料:浦 松比為 = 0.33、密度 = 8930 kg/m³ 揚氏係數 = 90×10^9 N/m²。

7-2 定義各銅鑼分析目標

A 銅鑼幾何形狀主要為一圓形平板,如圖 7-1(a)所示,因此銅鑼形狀尺寸 D1 是主要 影響 A 銅鑼振型頻率的參數,因本文此次主 要分析目標為幾何形狀,因而將 D1 尺寸大小 假設為定值,所以本文就不針對 A 銅鑼不作 尺寸變動分析。 B 銅鑼幾何形狀與 A 銅鑼幾何形狀的差 異處為, B 銅鑼中心位置比 A 銅鑼多出一個半 球體,半球體半徑為 *SR1*,如圖 7-1(b),本 文此處因希望瞭解半球體大小對銅鑼模態振 型與對應頻率的影響,因此定義變動尺寸為 *SR1*進行有限元素分析。

C 銅鑼幾何形狀與 A 銅鑼幾何形狀的差 異處為, C 銅鑼中心位置比 A 銅鑼多出一段圓 錐面,圓錐面長度為 *H1-H2*, 內圓直徑為 *D2*, 如圖 7-1 (c),本文此處因想瞭解圓錐長度與 內圓直徑對銅鑼模態振型與對應頻率的影 響,因此定義變動尺寸為 *D2* 與 *H1* 進行有限元 素分析。

D 銅鑼幾何形狀與 A 銅鑼幾何形狀的差 異處為,D 銅鑼的面為曲面而 A 銅鑼為平面, 而曲面禿起高度為 *H1-H2*,如圖 7-1(d),本 文此處因希望瞭解曲面凸起高度 *H1-H2* 對銅 鑼模態振型與對應頻率的影響因此定義變動 尺寸為 *H1* 進行有限元素分析。

7-3 各銅鑼之有限元素模型

A 銅鑼因本文先前定義的關係,因此就不 作尺寸變動分析,只做一般的有限元素分析。

B 銅鑼幾何形狀變化請對照表 7-3-1。

C 銅鑼幾何形狀變化請對照表 7-3-2 與 7-3-3。

D 銅鑼幾何形狀變化請對照表 7-3-4。

八、結果討論

8-1 模型驗證

頻率響應函數

本文中實驗模態分析主要是以衝擊鎚為 輸入端,加速度計為輸出端,於同點頻率響應 函數(i=49,j=49),及不同點頻率響應函數 (i=43,j=49)中,可分別找出其共振尖峰點及 其反共振點。並與有限元素分析之頻率響應函 數對照圖比對之後,如圖 8-1-25(a)與 圖 8-1-22(a)所示,結果發現於頻寬 600Hz 前之 模態振型有相當的吻合性。而在對應的同點關 聯性數(i=49, j=49),及不同點關聯性函數 (i=43, j=49)如圖 8-1-25(b)與圖 8-1-22(b),共 振點處關聯性值趨近於1,反共振點則趨近於 零,然而在反共振點有些許雜訊,其可能原因 應為感測器的動態範圍不足,由關聯性函數圖 也可看出其對應的關聯性函數值偏低,其量測 品質就會不錯。

模態參數

自然頻率(Natural Frequency):

如表 8-1-1 所示,其為有限元素分析與實 驗模態分析所得之自然頻率之對照表,於前 8 個自然頻率誤差皆在 5%以下,具有相當程度 的吻合性。

模態振型(Mode Shape):

本實驗以衝擊鎚為輸入端,加速度計感測 器為輸出端,經由曲線嵌合(Curve Fitting)所得 之銅鑼前 14 個模態振型與有限元素分析所得 之模態振型,兩者經比對之後,結果可發現其 模態振型相當程度的吻合。如表 8-1-2 所示之 FEA 與 EMA 之模態振型對照表。

MAC與 MSF 的比對:

MAC與 MSF 比對的方式主要是將,實驗 模態分析所獲得的位移量與有限元素分析所 的之位移量相除,所獲得,本實驗取前8個振 型做比對,結果值最高約為0.9 最低為0.5, 如表8-1-3所示。

8-2 聲音量測分析

鑼之聲音頻譜分析

在探討鑼之聲音實驗量測之前,首先必須 量測實驗室背景聲音的大小,當鑼量測到聲音 譜的峰值若高於背影聲音的 40dB 以上就表示 量測所得之聲音值是有效的可以進一步作聲 音頻譜分析。圖 8-2-1 為鑼所量測到之典型聲 音頻譜,由圖 8-2-1 中可明顯看出,於聲音尖 峰值位置,其主要的音量在 318Hz,因此在 318Hz 處會有較高之振動聲音值產生。 鑼之聲音分析探討

在鑼之聲音的分析方面將分成兩大方向來探 討,其一為不同點的敲擊,其二為不同材質的 衝擊鎚敲擊。

不同點的敲擊

圖 8-2-2 所示,其為不同敲擊點的聲音值 曲線圖,其敲擊位置其分別是中心點、1/3半 徑、1/2 半徑、2/3 半徑及最外圓處,由對應之 訊息得知如下:

● 頻率值在 318Hz 峰值最高。

- 距離銅鑼的中心愈遠處敲擊,則波型振幅
 愈低,也就是頻率愈低。
- 由 G(pp)與 G(aa)比對關係可知, 鑼之聲音
 產生是屬於結構振動。

不同材質的衝擊鎚敲擊

為了進一步了解衝擊鎚與鑼聲音之間的 關係,進一步再以不同的材質敲擊,如圖 8-2-3 所示,由對應之訊息得知如下:

- 頻率值在 318Hz 峰值最高。
- 愈軟的材質其則波型振幅愈低。
- 在頻寬 0~300Hz 處,愈軟的材質衝擊鎚敲
 擊其雜訊影響愈大,而 400~900Hz 處則以
 木頭的振幅最高,因此鑼一般是以布頭鎚
 敲擊

聲音量測與實驗模態分析之比對

由聲音量測可得知在 318Hz 的峰值為最高,而由實驗分析及有限元素分析所得之頻率 響應函數亦可看出在第3、4及5自然頻率的 峰值亦為最高,故可推斷出,鑼的主頻率是由 這3個自然頻率所組成。

8-3 收斂性分析結論

H 收斂性分析最後結果如圖 6-3-3 所示, 由圖中可觀察出編號 A、B、E、F的有限元素 模型的分析結果都各有無法求解出的模態振 型,因此就整體來說,以C與D的求解結果 為適當,如再進一步考慮求解時間的話,則以 C模型最為最適當。 P 收斂性分析最後結果如圖 6-4-1 所示, 由圖中可觀察出使用元素 Shell93 所分析出的 結果由頻率 610Hz 至 840Hz 之間都沒有模態 振型,這是不正確的,因此元素 Shell63 比起 元素 Shell93 更適合此次銅鑼有限元素模型的 架構。

84 四種銅鑼的典型幾何形狀與模態振型之 關係分析結果

各銅鑼分析結果

B 銅鑼中心部位的半球體大小會影響銅 鑼在高頻的 Mode Shapes,隨著半球體尺寸 SR1的變大-而對應頻率略微升高。

C 銅鑼變動尺寸為 H1 與 D2,增加尺寸 H1時,銅鑼聲音主頻的 mode 所相對應頻率會 隨之升高,反之則銅鑼相對應的頻率會隨之下 降,而在增加尺寸 D2時,銅鑼聲音主頻的 mode 所相對應頻率會隨之下降,反之則銅鑼相對應 的頻率會隨之下降。

D 銅鑼主要為一立體曲面所構成的,當尺 寸 *H1* 增加時,由 500 1000Hz 的 mode shapes 相對應的頻率也隨之升高,反之則相對應頻率 下降。

各銅鑼之相互比較

A 銅鑼與 B 銅鑼於模態振型與振型對應 頻率可以說都非常相似,差異處只在於高頻振 型上有所不同。

A 銅鑼與 C 銅鑼的模態振型於低頻時是 相同的,但 B 銅鑼的頻率明顯比 A 銅鑼高, 當頻率差過 300Hz時, B 銅鑼的模態振型與 A 銅鑼的模態振型就有明顯的差異。

A 銅鑼與 D 銅鑼比較的結果與 C 銅鑼相 似,但 D 銅鑼與 C 銅鑼相似的模態振型對應 頻率是比 C 銅鑼更高的。

九、結論

本文首先建立一個中國傳統樂器鑼的有 限元素模型,並藉由實驗模態分析比對印證, 並量測其聲音特性,再以比對過之有限元素模 型作出設計,進而嘹解幾何形狀對於樂器之聲 音及震動的關聯性。由以上之分析得到以下幾 點結論:

有限元素分析得到的結果,在某頻率間與 實體實驗所得之數據有相當程度的吻合性,且 由聲音量測之結果與分析結果主頻率(318Hz) 相吻合,故此模型可視為銅鑼之實際模型。

由於模型驗證成功,故可藉由有限元素模 型來進行銅鑼的振動及聲音分析,亦可作其他 種類銅鑼的振動及聲音特性分析。

可藉由調整有限元素模型之尺寸及材質 來達到樂器之設計變更,並達到改良的功效。

本文之有限元素分析模型在高頻區域自 然頻率誤差極大,因此若能降低高頻區的誤差 值,將可大大提升有限元素模型的適用性。建 議進一步探討銅鑼之結構,了解結構及聲音特 性。

中國傳統樂器音域不大、音階不全、音階 不準確及音量不夠大,期望藉由本文之經驗推 廣至其他種類之中國傳統樂器,建立準確之有 限元素模型,經由嘗試設計,達到改良以上中 國傳統樂器之缺點。

▶ 致 謝

感謝王?村教授一年來在專題上的細心 指導,使學生於研究態度與人生規畫皆受益良 多,在專題論文撰文期間,更是不厭其煩地細 心修正,在此獻上學生最誠摯的謝意與敬意。

本專題論文得以順利完成,要感謝振動實 驗室學長在專題製作時的鼎力協助、細心指 導。

感謝功學社樂器股份有限公司贊助提供。

· 參考文獻

 王?村,2000,「陸地車輛動態行駛品質 分析」,永達學報,第1卷,第1期,第 1-22頁。

- 2. 尤春風、黃一峻,1999,「從實體平面化 資料建植有限元素法網格」,國立臺灣大 學工程學刊,第75期,第155-168頁。
- 林榮渠, 1996,「模態分析(Modal analysis)
 的應用」, 三聯技術雜誌,第 37 期,第 59-63 頁。
- 普一平,丁介峰,王倫彰,1995,「有限 元素轉換矩陣法於層板之自由振動分 析」,中國土木水利工程學刊,第7卷, 第3期,第371-377頁。
- 黃俊洋,1991,「模態分析在工具機設計 及振動問題診斷的應用技術」,機械工業 雜誌,8月號,第257-266頁。
- 黃光輝,1992,「使用有限元素分析的概 念」,機械月刊,第18卷,第1期,第 211-216頁。
- Assan, A.E., 1999, "Analysis of Multiple Stiffened Barrel Shell Structures by Strain-based Finite Elements," The Journal of the Acoustical Society of America, Vol. 35, pp. 233-253.
- Bahnson, T., and Antaki, J. F., 1998, "Acoustical and Physical Dynamics of the Diatonic Harmonica," The Journal of the Acoustical Society of America, Vol. 103, No. 4, pp. 2134-2144.
- Bretos, j., and Santamaria, C., 1999, "Vibrational Patterns and Frequency Responses of the Free Plates and Box of a Violin Obtained by Finite Element Analysis," The Journal of the Acoustical Society of America, Vol. 105, No. 3, pp. 1942-1950.
- Bretos, J., Santamaria, C., and Moral, J. A., 1999, "Finite Element Analysis and Experimental Measurements of Natural Eigenmodes and Random Responses of Wooden Bars Used in Musical

Instruments," Applied Acoustics, Vol.56, pp.141-156.

- Brody H., 1995, "How Would a Physicist Design a Tennis Racket?," American Institute of Physics, Vol. 5 pp. 26-31.
- Chaigne A., and Doutaut V., 1997, "Numerical Simulations of Xylophones. I. Time-Domain Modeling of the Vibrating Bars," The Journal of the Acoustical Society of America, Vol. 101, pp. 539-557.
- McAngus T. N. P., and Frederick C. W., 1999, "Vestibular Responses to Loud Dance Music: A Physiological Basis of the "Rock and Roll Threshold"?" The Journal of the Acoustical Society of America, Vol. 107, No. 1, pp. 496-500.
- Rhaouti, L., and Chaigne, A., and Joly, P., 1998, "Time-Domain Modeling and Numerical Simulation of a Kettledrum," Applied Acoustics, Vol.105, pp. 3545-3562.
- Rossing, T. D., 1994, "Acoustics of the Glass Harmonica," The Journal of the Acoustical Society of America, Vol. 95, pp. 1106-1111.
- Skrodzka, E. and Sek, A. P., 2000, "Comparison of Modal Parameters of Loudspeakers of Different Working Conditions,." Applied Acoustics, Vol. 60, pp. 267-277.

圖 2-1-1、銅鑼實體圖

圖 2-1-2、銅鑼分割規劃點圖

圖 2-1-3、 銅鑼幾何形狀示意圖

圖 2-2、實驗模態流程圖

圖 3-1-1、實驗模態分析設備-BK3550

圖 3-1-2、實驗模態分析架構圖

Wm THE CH.A Y: 1.60U X: 0s + 62.5 #RVM: 3	ms	MERS	MAIN YMAX	Y: -1.45mU X: 45.41ms : 1.49U	
A	*.*				
0 10m Setup W Measurement: Trigger:	DUAL-CH. SPE	30m CTRUM AVERAGING Slope: + Level	40m : +0.15*ma×	50m 800 lines input	60m
FREQ. SPAN: HEIGHT CH.A: Weight ch.B: ch.B: ch.B: Generator:	RANDOM 1.000 CONTINUOUS	Af: 1Hz T Shift: 1.46ms Shift: 1.95ms IRECT 0.7Hz IRECT 0.7Hz OV	: 1s Leng Leng ON WHITE	Δt: 488μs th: 1.95ms th: 333.50ms 20.9mV/N 9.86mV/g DC:	1.000V 17

圖 3-1-3、BK3550 頻譜分析儀設定畫面

圖 4-1、聲音量測分析實驗架構方式

圖 8-2-3、不同材質衝擊鎚敲擊第一點結果

表 2-1-1、尺寸對照表

項目	<i>H1</i> (m)	<i>H</i> 2(m)	<i>D1</i> (m)	<i>D</i> 2(m)	<i>t</i> (m)
尺寸	0.04	0.018	0.315	0.0.145	0.0014

表 2-1-2、材料性質對照表

	楊氏係數(N/m ²)	密度(kg/m ³)	浦松比
銅鑼	90×10 ⁹	8930	0.33

表 5-3、H-收斂性分析有限元素模型分割量對 照表

有限元	線段2的	線段3的	線段4的	模型分	求解時
素模型	等分量	等分量	等分量	割節點	間
編號				數	
А	10	5	10	693	12 秒
В	10	10	5	721	12 秒
С	10	10	10	921	15 秒
D	10	10	15	1121	20 秒
Е	15	15	10	1296	21 秒
F	15	15	15	1596	30 秒

表 7-3-1、B 銅鑼幾何形狀變化對照表

有限元素模	Dı	H2	SR1	t
型編號				
B-1	0.315m	0.018m	0.032m	0.0014m
B-2	0.315m	0.018m	0.022m	0.0014m
B-3	0.315m	0.018m	0.012m	0.0014m

表 7-3-2、C 銅鑼幾何形狀變化 H1 請對照表

有限元素	Dı	D2	H1	H2	t
模型编號					
C-1	0.315m	0.145m	0.05m	0.018m	0.0014m
C-2	0.315m	0.145m	0.04m	0.018m	0.0014m
C-3	0.315m	0.145m	0.03m	0.018m	0.0014m

表 7-3-3、C 銅鑼幾何形狀變化 D2 對照表

有限元素	Dı	D2	H1	H2	t
模型編號					
C-4	0.315m	0.2m	0.04m	0.018m	0.0014m
C-2	0.315m	0.145m	0.04m	0.018m	0.0014m
C-5	0.315m	0.1m	0.04m	0.018m	0.0014m

表 7-3-4、D 銅鑼幾何形狀變化對照表

有限元素	Dı	SR2	H1	H2	t
模型編號					
D-1	0.315m	0.5m	0.05m	0.018m	0.0014m
D-2	0.315m	0.5m	0.04m	0.018m	0.0014m
D-3	0.315m	0.5m	0.03m	0.018m	0.0014m

表 8-1-1、自然頻率對照表

Mode	1	2	3	4	5	6	7
FEA	100Hz	100Hz	314Hz	315Hz	320Hz	607Hz	608Hz
EMA	92.2Hz	93.6Hz	305Hz	311Hz	317Hz	503Hz	534Hz
Mode	8	9	10	11	12	13	14
FEA	623Hz	624Hz	958Hz	959Hz	1018Hz	1024Hz	1175Hz
EMA	624Hz	632Hz	700Hz	719Hz	726Hz	753Hz	774Hz

表 8-1-3、MAC

mode	1	2	3	4	5	6	7	8
1	0.76	0.00	0.01	0.00	0.00	0.00	0.00	0.00
2	0.01	0.83	0.01	0.01	0.00	0.00	0.01	0.00
3	0.00	0.03	0.90	0.00	0.00	0.00	0.00	0.00
4	0.00	0.00	0.00	0.59	0.04	0.00	0.00	0.00
5	0.06	0.00	0.00	0.04	0.48	0.03	0.00	0.00
6	0.01	0.00	0.00	0.00	0.00	0.74	0.00	0.00
7	0.01	0.00	0.00	0.00	0.00	0.00	0.78	0.21
8	0.00	0.01	0.00	0.00	0.00	0.00	0.02	0.67

表 8-1-2、FEA 與 EMA 對照表

