中國傳統樂器振動與聲音特性探討

		指導	教授	: 3	王柖	衬	教授	ž	
學生如	生名	:	李雨	軒	Ę	脹志的	肁	黃有	郭翔
學	號	:	A893	2038	Α	89320	52	A8932	2047
	國	立	屏	東	科	技	大	學	
		機	械	I	- -	程	系		

摘要

本文以探討中國傳統樂器 - 銅鑼之振動 與聲音特性爲目的。研究方式分兩大主體,其 一利用有限元素分析獲得銅鑼之模態參數,再 與以衝擊鎚爲輸入,加速度計爲輸出的實驗模 態分析之結果進行模型驗證。其二以衝擊鎚爲 輸入,麥克風爲輸出配合頻譜分析儀進行聲音 量測。進而了解振動與聲音特性之間的關聯 性。

本文第一階段以有限元素分析進行理論 分析,再由實驗而得到銅鑼的模態參數(自然 頻率、模態振型、阻尼比),將理論分析與實 驗模態分析進行模型驗證。

第二階段以麥克風作聲音量測,嘗試得到 聲音特性,並與第一階段之結果作對照,探討 振動與聲音特性的關聯性。

一、前言

振動的問題一直存在於日常生活中,其 造成了能量的損失,也是造成機器破壞的原因 之一,所以減少振動和隔離振動,便是每個工 程師的目的。看似毫無用途的振動,實則更是 有著存在的價值。

樂器的振動方式與其發出聲音大小、音質 好壞有相當大的關係,舉凡與聲音相關者,上 至鋼琴、吉他、定音鼓、三角鐵、木琴…等樂 器,下至球拍、玻璃杯、等…。只要是聲音的 範圍者無不相關。至於聲音的分析方面,就過 去的做法,僅以經驗的方式來分析,如今隨著 科技的發達,本實驗利用頻譜分析儀以及實驗 的搭配,再以驗証分析,進而了解樂器的振動 方式與聲音之間的關係。

本實驗利用頻譜分析儀及有限元素分析 求出理論及實驗之模態參數和頻率響應函 數,進一步作模型驗證,以確定有限元素模型 是否能代表實體模型,再加上聲音的量測,討 論聲音特性與振動之間的關聯性。

利用已驗證完畢之有限元素模型去設計 不同尺寸、材質之銅鑼,並討論尺寸、材質的 改變與模態參數的相關性,進而增加製銅鑼的 便性。

Brody [11] 對網球拍的研究, Brody 的實驗方式分爲二部份,其一是固定球拍,其二是不固定球拍。本實驗也採取 Brody 的 free-free不固定球拍方式,也就是沒有位移的限制。

Chaigne and Doutan [12] 的研究動機是測 試木琴的物理現象,其利用木槌敲擊木琴,進 而探討時間域的聲壓輻射之計算,並利用有限 元素分析模擬的方式,以及數學模式的原理去 比對兩者的差異。Chaigne 對於木琴研究範圍 包括了敲擊的器材木槌以及木琴 bar 都一併作 分析。

[8,9,12,14-16] 等,不論是小提琴、木琴、 定音鼓、揚聲器…等,皆是對樂器作深入研 究。有鑑於此,本研究以銅鑼作振動與聲音之 深入探討。

二、 問題定義/分析目標

2-1、問題定義:

本文採用中國傳統樂器直徑為 22.5cm 的 小型銅鑼,如圖 1,採用 free-free 邊界進行有 限元素分析、實驗模態分析及聲音量測。模擬 free-free 邊界之方式為以尼龍繩懸掛於一支撐 架,依銅鑼之外形分割為 33 點進行實驗,如 圖 2 所示。其尺寸及性質如表 1、表 2 所示。 2-2、分析目標:

- 以有限元素分析架構一有限元素模型,進行有限元素分析,得到理論之模態參數及頻率響應函數。再針對實體作 實驗模態分析求得實驗之模態參數及 頻率響應函數。以實驗模態分析為基 準,對有限元素分析進行比對驗證,包 括自然頻率、振型、頻率響應函數。進 而確定有限元素模型之正確性。模態驗 證流程圖如圖 4。
- 針對銅鑼之聲音作分析,藉由衝擊鎚的 敲擊,將所量測到之訊號傳入頻譜分析 儀作分析及探討。並以振動分析所得之 模態參數與聲音量測所得之聲音特性 進行比對,以找出聲音與振動之關聯性
- 藉由與實驗模態驗證過之有限元素分 析模型進行設計分析,以不同尺寸及材 質作為設計原則,探討其尺寸及材質不 同時,模態參數及聲音特性的變化和關 聯性,增加製銅鑼的便利性。

三、 有限元素分析(FEA)

本文採用 ANSYS 軟體進行有限元素分析。首先架構銅鑼之有限元素分析模型。由於 銅鑼爲圓形曲面,且厚度遠小於直徑,故採用 薄殼三維元素 3D(shell 63)架構。以極座標方式 將 R 方向分 16 等份, θ 方向分 32 等份, 如 圖 3 所示。因實體由一尼龍繩所懸吊,故有限 元素模型位移限制採用四周皆為 free-free 的方 式。

由於楊氏係數及浦松比未知,而密度可 由體積及重量求得,故利用最佳化程式,輸入 已知的密度,而未知的楊氏係數和普松比則以 文獻中的參考數據給定上下限,以實驗模態之 模態參數為基準,求出較吻合之楊氏係數及普 松比。

首先進行模態分析(Modal Analysis),求出 模態參數及振型。模態參數的修正以最佳化進 行。再進行簡諧分析(Harmonic Analysis),配合 實驗之敲擊點,給定不同位置之力量,由於模 型本身非一平面,故給定之力量需依照模型表 面之傾斜角度給定不同方向之力量,量測位置 亦需依照其不同位置傾斜的不同角度求出其 不同方向的數據,進行數學運算,求出頻率響 應函數。

四、 實驗模態分析

4-1、實驗模態分析:

本文的實驗架構及實驗設備如圖 5 所 示,首先將衝擊鎚及加速度計以導線經過電荷 放大器分別接於 BK-3550 頻譜分析儀之 A、B 輸入模組,再透過介面將頻譜分析儀與己安裝 CADA-PC 之個人電腦相互連接。本實驗的作 動原理是以衝擊鎚對銅鑼激振,搭配感測器一 加速度器,以量取銅鑼之響應訊號。經過電壓 放大器將訊號傳入頻譜分析儀,由頻譜分析儀 對輸入模組之訊號作快速傅立葉轉換,求得銅 鑼之頻率響應函數和關聯性函數,最後再將傳 入電腦中之頻率響應函數以 CADA-PC 軟體作 曲線嵌合(Curve Fitting)。結果可得模態參數(自 然頻率、阻尼比和振型)。

實驗的第一步驟須完成 BK3550 頻譜分析 儀之設定,頻寬為 0~800Hz,解析度為 800 條。 實驗模態分析之方式爲將銅鑼畫分爲 33 點, 加速度計固定於第 29 點,而移動衝擊鎚於銅 鑼上的每一個測試點。完成 33 點測試後可得 33 組頻率響應函數,再將訊號以 CADA-PC 軟 體作曲線嵌合(Curve Fitting),以求得銅鑼的模 態參數。

4-2、聲音分析:

實驗設備架構方式如圖 6 所示,首先將 麥克風接於頻譜分析儀之 channel B 輸入模 組,而 channel A 輸入模組則為加速度計或是 衝擊鎚兩種輸入設備。麥克風距離銅鑼的位置 並無一定的標準,以實際量測到聲音値為準, 且要大於背景聲音,本實驗以 3~5cm 作基準。

在實驗過程中,第一步驟必須完成 BK-3550頻譜分析儀的設定,頻寬的大小影響 到訊號的取樣時間,一般而言頻寬範圍越大則 取樣的時間就會越短,在本實驗中是以頻寬 800Hz 前幾個重要的峰值爲討論重點,因此頻 寬以 1600Hz 爲主。

在銅鑼之聲音的分析方面,將分爲兩大方 向來探討。其一爲不同點的敲擊,其二爲不同 材質的衝擊鎚敲擊。

1. 不同點的敲擊:

爲了更方便分析四點之間的關聯性,將其 振動頻率聲音值用曲線圖畫出以利於分析比 較

2. 不同材質的衝擊鎚敲擊:

爲了進一步了解衝擊鎚與銅鑼聲音之間 的關係,以不同的材質敲擊,分別爲木頭鎚、 塑膠鎚、橡膠鎚進行實驗。

五、 結果與討論

首先進行模型驗證(Model Verification),以 有限元素分析之結果對照實驗模態分析之結 果,以求得有限元素模型是否能夠代表實際模 型,其比對包括自然頻率、振型及頻率響應函 數之比對。接著進行聲音量測,求出聲音特 性,並與實驗模態分析進行對照,討論兩者之 間的關聯性。最後以所架構及比對過之有限元 素分析模型,設計不同尺寸及材質之鑼,比對 其模態參數及頻率響應函數,並探討其可能之 聲音特性及音階。

5-1、模型驗證(Model Verification):

分為自然頻率、振型及頻率響應函數的比 對驗證。首先比對自然頻率,接下來比對各自 然頻率所對應之振型是否符合。最後對照實驗 模態分析及理論模態分析之頻率響應函數及 關聯性函數是否吻合。

1. 最佳化:

由於實體之密度較易求得,而楊氏係數及 浦松比皆不易求得,故以最佳化程式,輸入密 度及分析之後所期望求得之自然頻率值,依照 文獻資料給定楊氏係數及普松比之上下限,求 得之最佳化結果如表3所示。因第2組數據與 實驗模態分析所得之數據較爲接近,且如表3 所示,其結果與實驗模態分析比對,誤差值有 正有負,而非一起偏向正或負,較具準確性。 故採用第2組數據。

2. 頻率響應函數:

實驗以衝擊鎚爲輸入端,加速度計感測器 爲輸出端。與有限元素分析之頻率響應函數對 照圖比對之後,結果發現於頻寬 500Hz 前之峰 値有相當的吻合性。

首先以敲擊及量測相同點作討論。如圖 7(a)所示於同點頻率響應函數(i=29, j=29),因 其為敲擊及量測同點,故可找出其共振尖峰點 及其反共振點,在最前端有所誤差可能為有限 元素模型位移限制採 free-free,而實體則以尼 龍繩懸掛,所以產生誤差。其頻率響應函數所 對應之敲擊量測同點(i=29, j=29)關聯性函數如 圖7(b)所示。因其為敲擊及量測同點,故可找 出其共振尖峰點及其反共振點。然而在反共振 點有些許雜訊,其可能原因應爲感測器的動態 範圍不足所致,但其關聯性值皆在0.9以上, 故亦算合理。 次以敲擊及量測不同點作討論。如圖 8(a) 所示之不同點頻率響應函數(i=29,j=33),因其 爲敲擊及量測不同點,故其反共振點不明確。 其頻率響應函數所對應之敲擊量測同點關聯 性函數如圖 8(b)所示。因反共振點不明確,所 以關聯性值皆趨近於一,爲合理之現象。

3. 模態參數:

■ 自然頻率(Natural Frequency)

表4所示為經由最佳化過程之有限 元素分析與實驗模態分析所得自然頻率 之比對。前5個自然頻率誤差百分比皆 在3%以下且有正有負,非皆爲正或負, 具有相當吻合性。但在高頻區域之自然 頻率則差距頗大。僅前5個自然頻率對 應性較好。

■ 振型(Mode Shape):

實驗以衝擊鎚為輸入端,加速度計 感測器為輸出端,經由曲線嵌合所得到 的銅鑼之前七個模態振型與有限元素分 析所得之模態振型如,兩者對照表如表6 所示。結果可發現二者模態振型都相當 地吻合,僅高頻自然頻率差異較大。

■ 阻尼比(Damping Ratio):

在實驗過程中,量測位移響應時, 由於加上指數加權函數(Exponential window)而造成量測上阻尼比增大效 應,故需要修正阻尼比才可得知實際的 阻尼比如表5所示,表5顯示出衝擊鎚 搭配加速度計而得之七個阻尼比,並可 發現阻尼比會隨著模態數的增加而減 少。

5-2、聲音特性分析:

在探討銅鑼之聲音實驗量測之前,首先必須量測實驗室背景聲音的大小,當銅鑼量測到 聲音譜的峰值若高於背影聲音的 10dB 以上就 表示量測所得之聲音值是有效的可以進一步 作聲音頻譜分析。實驗結果發現,實驗室的背 景聲音頻譜如圖 所示,而銅鑼所量測到之典 型聲音頻譜如圖 9 所示、其各頻率之聲音值都 比背景聲音各頻率之值還高於 10dB 以上,因 此實驗量測之數據是可信賴的,故可進一步做 聲音之探討分析。

1. 銅鑼之聲音頻譜分析

圖 9 為銅鑼所量測到之典型聲音頻譜。由 圖 9 中可明顯看出,於出現聲音尖峰值時,其 主要的頻率在 423Hz,因此在 423Hz 處會有較 高之振動聲音值產生。

2. 銅鑼之聲音分析探討

在銅鑼之聲音的分析方面將分成兩大方 向來探討,其一為不同點的敲擊。不同材質的 衝擊鎚敲擊。

■ 不同點的敲擊。

圖 10 所示,其為不同敲擊點之位置 圖,圖 11 為不同敲擊點的聲音值曲線圖, 其中 1~4 分別是中心點、1/3 半徑、2/3 半 徑及最外圓處,由對應之訊息得知如下:

A)在423Hz的峰值最高。

- B) 離中心愈遠處敲擊,則波型振幅愈 低。
- C) G(pp)與 G(aa)比較關係可知,銅鑼之聲音產生是屬於結構振動。

■ 不同材質的衝擊鎚敲擊。

為了進一步了解衝擊鎚與銅鑼聲音 之間的關係,再以不同的材質敲擊,橡 膠、塑膠及木頭槌,如圖 12 所示。由對 應之訊息得知如下:

A)在423Hz的峰值最高。

- B) 愈軟的材質其則波型振幅愈低。
- C) 在頻寬 0~300Hz 處,愈軟的材質衝 擊鎚敲擊其雜訊影響愈大,而 400~900Hz 處則以木頭的振幅最 高,所以銅鑼一般是以木頭敲擊。

5-3、聲音量測與實驗模態分析之比對:

1. 自然頻率(Natural Frequency):

由聲音量測可得在 423Hz 的峰值為最高, 而由實驗分析及有限元素分析所得之頻率響 應函數亦可看出由第 3、4 及 5 自然頻率的峰 值亦爲最高,故可推斷出由此 3 個自然頻率所 組成之頻率爲主頻率。

2. 振型(Mode Shape):

由實驗及有限元素分析可看出,主頻率中 的第4及第5個 mode 其振型方面均是 R 方向 分2段,中間部分在 θ 方向不分段,外圈部 分 θ 方向分6段。就中間部份與第7個 mode 相比較,第7個 mode 中間 θ 分兩部分作相對 運動。可推論第7個 mode 因爲兩邊互相抵制, 所以振幅比第4及第5個 mode 來的小。

六、結論

本文首先建立一個中國傳統樂器銅鑼的 有限元素模型,並藉由實驗模態分析比對印 證。並量測其聲音特性。再以比對過之有限元 素模型作出設計,進而嘹解尺寸、厚度及材質 對於樂器之聲音及震動的關聯性。由以上之分 析得到以下幾點結論:

 有限元素分析得到的結果,在某頻率間與 實體實驗所得之數據有相當程度的吻合性,且 由聲音量測之結果與分析結果主頻率(423zH) 相吻合,故此模型可視爲銅鑼之實際模型。
 由於模型驗證成功,故可藉由有限元素模

型來進行銅鑼的振動及聲音分析,亦可作其他 種類銅鑼的振動及聲音特性分析。

 可藉由調整有限元素模型之尺寸及材質來 達到樂器之設計變更,並達到改良的功效。

 本文之有限元素分析模型在高頻區域自然 頻率誤差極大,因此若能降低高頻區的誤差 値,將可大大提升有限元素模型的適用性。建 議進一步探討銅鑼之結構,了解結構及聲音特 性。 5. 中國傳統樂器音域不大、音階不全、音階 不準確及音量不夠大,期望藉由本文之經驗推 廣至其他種類之中國傳統樂器,建立準確之有 限元素模型,經由嘗試設計,達到改良以上中 國傳統樂器之缺點。 致謝:

七、致謝

感謝王栢村教授一年來在專題上的細心 指導,使學生於研究態度與人生規畫皆受益良 多,在專題論文撰文期間,更是不厭其煩地細 心修正,在此獻上學生最誠摯的謝意與敬意。

本專題論文得以順利完成,亦要感謝呂 世鑫學長、胡華良學長及文昌學長在專題方面 的鼎力協助、細心指導。

八、參考文獻

王栢村,2000,「陸地車輛動態行駛品質分析」,永達學報,第1卷,第1期,第1-22頁。
 尤春風、黃一峻,1999,「從實體平面化資料建植有限元素法網格」,國立臺灣大學工程學刊,第75期,第155-168頁。

林榮渠,1996,「模態分析(Modal analysis)
 的應用」,三聯技術雜誌,第 37 期,第 59-63
 頁。

4. 普一平,丁介峰,王倫彰,1995,「有限元 素轉換矩陣法於層板之自由振動分析」,中國 土木水利工程學刊,第7卷,第3期,第371-377 頁。

5. 黃俊洋,1991,「模態分析在工具機設計及 振動問題診斷的應用技術」,*機械工業雜誌*,8 月號,第257-266頁。黃光輝,1992,「使用有 限元素分析的概念」,*機械月刊*,第18卷,第 1期,第211-216頁。

6. Assan A.E., 1999, "Analysis of Multiple Stiffened Barrel Shell Structures by Strain- based Finite Elements," *The Journal of the Acoustical Society of America*, Vol. 35, pp. 233-253.

8. Bahnson, T., and Antaki, J. F., 1998, "Acoustical and Physical Dynamics of the Diatonic Harmonica," *The Journal of the Acoustical Society of America*, Vol. 103, No. 4, pp. 2134-2144.

9. Bretos, j., and Santamaria, C., 1999, "Vibrational Patterns and Frequency Responses of the Free Plates and Box of a Violin Obtained by Finite Element Analysis," *The Journal of the Acoustical Society of America*, Vol. 105, No. 3, pp. 1942-1950.

10. Bretos, J., Santamaria, C., and Moral, J. A., 1999, "Finite Element Analysis and Experimental Measurements of Natural Eigenmodes and Random Responses of Wooden Bars Used in Musical Instruments," *Applied Acoustics*, Vol.56, pp.141-156.

11. Brody H., 1995, "How Would a Physicist Design a Tennis Racket?," *American Institute of Physics*, Vol. 5 pp. 26-31.

12. Chaigne A., and Doutaut V., 1997, "Numerical Simulations of Xylophones. I. Time-Domain Modeling of the Vibrating Bars," *The Journal of the Acoustical Society of America*, Vol. 101, pp. 539-557.

13. McAngus T. N. P., and Frederick C. W., 1999,

"Vestibular Responses to Loud Dance Music: A Physiological Basis of the "Rock and Roll Threshold" ?" *The Journal of the Acoustical Society of America*, Vol. 107, No. 1, pp. 496-500.

14. Rhaouti, L., and Chaigne, A., and Joly, P., 1998,
"Time-Domain Modeling and Numerical Simulation of a Kettledrum," *Applied Acoustics*, Vol.105, pp. 3545-3562.

15. Rossing, T. D., 1994, "Acoustics of the Glass Harmonica," *The Journal of the Acoustical* Society of America, Vol. 95, pp. 1106-1111.

 Skrodzka, E. and Sek, A. P., 2000, "Comparison of Modal Parameters of Loudspeakers of Different Working Conditions,." *Applied Acoustics*, Vol. 60, pp. 267-277.

圖 3、有限元素分析數學模式化

表1、尺寸對照表

項目	H1(m)	H2(m)	L1(m)	L2(m)	T,厚度(m)	θ(角度)
尺寸	0.03	0.0145	0.0615	0.1125	0.002	15.87°

表 2、材料性質對照表

	楊氏係數(N/m²)	密度(kg/m³)	浦松比
銅鑼	7.22×10 ¹⁰	19472	0.34

表3、最佳化分析數據

	1	2	3	4
楊氏係數	7.90E+10	7.22E+10	7.07E+10	7.03E+10
浦松比	0.29955	0.30667	0.27769	0.27172
密度	19476	19476	19476	19476
Mode 1	138.64	132.57	131.2	130.81
Mode 3	431.18	412.33	408.05	406.84
Mode 4	446.34	426.83	422.4	421.14
Mode 5	449.47	429.82	425.36	424.09
Mode 6	873.2	835.03	826.37	823.9
Mode 7	898.48	859.2	850.29	847.76

表 4、FEA 與 EMA 自然頻率對照表

Mode	1	2	3	4	5	6	7
FEA(Hz)	132.57	132.96	412.33	426.83	429.82	835.03	859.20
EMA(Hz)	132.33	137.90	414.73	423.05	428.73	628.00	700.00
誤差	-0.4%	2.94%	0.4%	-0.9%	-0.43%	-17%	-22.7%

表 5、修正組尼比

	輸入加權函	數長度	0.32129			
由 入 フ	衰減率=1/加權函數長度					
判別ノへ	公式:自然頻率*修正之阻尼比+衰減率=自然頻率*實驗之阻尼比					
		結構實際阻尼比%				
實驗阻尼%	自然頻率(Hz)	實驗阻尼	衰減率	修正阻尼%		
0.41	132.33	0.0041	3.11245	0. 3566110		
1.12	137.90	0.0112	3.11245	0. 7607812		
0.39	414.73	0.0039	3.11245	0. 2905578		
0.17	423.05	0.0017	3.11245	0.0529068		
0.14	428.52	0.0014	3.11245	0.0244015		
0.31	628.00	0.0031	3.11245	0. 2311206		
0.21	700.00	0.0021	3.11245	0. 1392339		

表 6、模態振型對照表

Mode	FEA	振型	EMA 振型			
1						
	132.57 Hz		132.	33 Hz		
2						
	132.6	50 Hz	137.	90 Hz		
3						
	416.5	58 Hz	414.	73 Hz		
4						
	417.9	98 Hz	423.05 Hz			
5						
	420.4	l3 Hz	428.	52 Hz		
6						
	769.6	65 Hz	628.00 Hz			
7		8				
	805.0)7 Hz	700 Hz			
備註:1. 第1、2 振型僅正負相反,其餘性質皆相同,且頻率值相當接近。						
2. 在頻率響應圖上可看出,第3、4及5個振型,其自然頻率產生一個共振點,就中間						
図PUI版相积以为 3 间版空取八 7 舟 4 间版空八之 7 舟 5 间版空取八 ° 3 ●:振幅向上,〇:振现向下。						
2. ●・104週间上、○・104名回口。						