轉子系統教學模型之設計製作與臨界轉速之驗證

蘇威全、楊清賢、辜永吉 指導教授:王 村 國 立 屏 東 科 技 大 學 機械工程系

摘要

本報告主要是設計製作一轉子系統教學 模型, 並利用 ANSYS 5.5 軟體從事轉子系統 轉軸之側向振動模態分析,並針對模型之臨界 轉速進行驗證。本文中的轉子系統教學模型是 由單相交流電刷馬達、交流變壓器、馬達座、 連軸器、轉速測量計、主軸、軸承總成、主基 座、安全罩所組成。本文先依據實驗模態分析 之架構圖以求取轉子系統教學模型之模態參 分析所得之自然頻率與振型比對,進而修正模 型所假設之 k_v 值與 k_α 值,以使實驗與有限元 素的分析結果能夠吻合;並且進行臨界轉速的 測定,以驗證實驗模態分析所得之自然頻率是 否吻合。經過本文幾次修正 k , 與 k , 值後發現 其結果與實驗結果並不吻合,但若單純由模態 振型圖(mode shape)來觀察卻發現其振型圖很 吻合,且再由臨界轉速的驗證結果來看,便可 確定本文的研究方法正確。所建立之轉子系統 教學模型,未來希望使其成為一個一般化模 組,並針對各種不同的狀況如軸承鬆動與損 壞、不同材質軸心、不對心、負荷質塊、負荷 偏心質量等詳加研究,最後以期能夠針對真正 的轉子系統進行監控,達到預測性維修及保 養。

一、前言

轉子系統是工業界中時常運用的系統, 幾乎所有生產機具都有它的存在,運用範圍也 小自伺服馬達、交直流電動馬達等,大至泵浦 [8]、生產工具機的主軸[5]、渦輪裝置、汽渦 輪機、工具機傳動裝置等,用途之廣泛,幾乎 可說所有機械工廠都不會沒有的一種裝置,所 以也就突顯它的重要性,讓轉子系統成為主事 者眼中最不能發生問題的那一部分,也因為它 的常見性以及運用範圍廣,工作量也就隨之成 為工廠中最多的一部分,而此一特性卻讓轉子 系統成為工廠中最容易損壞的那一部分,而因 為它的重要性,所以只要它一出問題,工廠必 須全面停工加以檢測維修,其所造成的損失是 無法預期的。以工具生產母機而言,最常破壞 的形式多是在工作運轉中因為本身的機具配 合的問題、剛性問題、以及其他外力激振的關 係,使轉子產生振動,這是造成機具損壞的主 因,雖然振動是無法避免,但工業界卻可運用 量測及監控的方式來降低振動對工具機所帶 來的破壞[11]。

當一部機具完成組裝後便決定其每一個 自然頻率 $W_n(\sqrt{k/m}; k: 系統之彈簧常數。); 而『臨界轉速』即為運$ 轉過程中的工作頻率十分接近或相等於自然頻率;倘若機具在生產過程中其工作轉速接近臨界轉速,那麼轉子本身將會產生比其他工作轉速下更高的側向振動效應,此種效應稱之為『共振』,而對應的頻率稱之為『共振頻率』,而這種加倍的側向振動現象也就是造成機具損壞的重要因素。

本文目的為:(1)設計一個轉子系統教學 模型,利用 BK3550訊號分析系統量測此教學 模組動態及靜態的模態參數(\hat{w}_n 、 \hat{f}_n 、 \hat{x}_n), 並與有限元素分析結果加以比對。(2)利用雷 射反射式轉速測量計、BK3550訊號分析系統 以及 CADA-P 驗證比對其臨界轉速是否與實 驗模態參數相吻合[1]。而最終結果是建立一 個一般化模組,以模擬各種轉子系統振動形式 的教學模型。

本文所分析之轉子系統轉軸,其材質為 304 不銹鋼材,全長 0.8 公尺,直徑 0.01 公尺。 本文是以線性彈簧與旋轉彈簧模擬轉軸與聯 軸器間的剛性特性,藉著改變彈簧參數以進行 有限元素分析,所得之結果再與實驗結果比 對,以獲得真正的 k_y 值與 k_g 值[2]。而由結果 得知,有限元素分析結果與實驗分析結果並不 相同,但模態振型圖卻是蠻相似的,故以此推 斷本文的研究方法應該正確。而經由研究討論 後認為本文考慮之轉軸假設為簡支樑並不符 合實際情況。

未來希望能重新架構轉子系統之有限元 素模型,以進一步地做最佳化分析[6],並且應 用此轉子系統針對軸承鬆動或損壞、軸裂、偏 心負荷、軸承不對心、加質塊加以研究探討對 轉軸有何負面的影響[4][5][7][8]。

二、轉子系統之功能設計與製作

本實驗中將建立一模型,而模型各部位所 要求的功能、尺寸、材料等特性如圖一所敘 述:

圖一、轉子系統圖示意圖

各部位之材料

- (1) 主軸為鋼及銅均勻質桿。
- (2) 軸承座、馬達座為鋁合金,為了是減 少整個系統的重量。
- (3) 基座以鑄鐵為材料,因其阻尼為常見 金屬中較高的,可減少高速馬達在轉

動時的振動,間接的少了影響本實驗 的變數。

表一: 各:	王安部位乙基	刀能尺	──≣	安計

項目	型 號	功能尺寸說明		
馬 達	交流式碳刷 單相高速馬達	轉速可達 16000rpm		
	- 110V 50/60 U-			
變 壓 器	input – 110 v, 50/60 Hz			
	output = $0 \sim 130$ V, 5A			
馬達座	自行加工	提供馬達穩定輸出		
聯 軸 器	鋁合金吸振型	f_{in} = 10mm		
		f_{out} = 25mm		
轉速量測計	雷射反射式	須於轉軸貼反射貼紙		
<u>十 </u>	留后指	外 徑 10mm		
土 翔	ച 到貝件	長度 800mm		
柚 衣吻式	「0 號」之山型軸承兩	軸承內徑要求為 10mm ,		
毗 庈ᠺ總成	只,自行加工軸承座	必以鏍栓固定於軸承座		
主基座	自行加工	1000mm×150mm		
安全罩	壓克力製作	以防高速旋轉造成破壞		

在本模型中,除了需自行製作的部份外,

<u>其餘的各零件皆選用工業標準零件,以符合工</u> <u>業生產之模組化觀念</u>。

本教學模型可進行無負荷、有負荷及臨界 轉速之測定與驗證三大項的實驗分析:

(一) 無負荷狀態分析

以內徑 10mm 的鋼質桿在無負荷狀態下, 分別使用不同種類的軸承進行臨界轉速 的測定,固定n值求O.D.S.(操作變形曲 線),從而求得其他如:臨界轉速、振動 頻率、振型.....等,如此便可推算出正 常工作轉速的範圍。

(二) 有負荷狀態分析

本實驗中荷重狀態分析為,選定一鋼質 桿,依照時實驗之需求,固定變數(軸承、 轉速、荷重、荷重位置...等),進行和無 負荷狀態分析相同的實驗分析;將不同軸 承荷相同重量、轉速以某一頻率增加、改 變荷重位置、偏心質量、軸承鬆動、主軸 不對心、軸承破壞..等不同的工作情況, 進行接近現實工作環境的模擬,以期求得 接近真正狀況的實驗數據。

(三) 臨界轉速之測定與驗證

將主軸黏上一雷射反射貼紙,利用雷射反 射式轉速測定計量測實際的臨界轉速,將所得 之參數與理論模態分析所得之模態參數相互 驗證。

三、轉子系統之臨界轉速理論分析與實驗驗證

本文主要的研究方法是對轉子系統轉軸 進行有限元素分析與實驗模態分析,其分析流 程圖如圖二所示。

圖二、轉子系統轉軸分析流程圖

(1) 有限元素分析

本文所分析之轉子系統,如圖一所示。在 有限元素分析本文主要是對轉子系統轉軸進 行側向振動模態分析,以獲得其自然頻率 W_n 與振型 f_n 。本文考慮之轉軸其與軸承座間的 剛性特性假設為簡支端,而在轉子系統右端的 馬達與聯軸器,本文是應用線性彈簧 (k_y) 與旋 轉彈簧 (k_q) 來模擬其之間與轉軸配合的剛性 特,其有限元素模型之示意圖如圖三所示。

圖三、轉子系統之有限元素模型示意圖

本文是應用 ANSYS5.5 軟體從事轉子系 統轉軸之側向振動模態分析。分析元素選用二 維樑元素(beam 3)模擬轉軸、選用彈簧元素 (combination 14)模擬線性彈簧(k_y)與旋轉彈 簧(k_q),以直接架構法(direct generation)來架 構轉子系統轉軸之有限元素模型,且運用 Reduced 求取法計算特徵值,以獲得轉軸之自 然頻率 W_n 與振型 f_n ,其有限元素模型如圖四 所示。

在對轉軸進行分割,本文是採用四倍原 則,因考慮看四個模態振型圖,因此最少需將 轉軸分割成十六等分,為了使分析結果能更準 確,故本文將轉軸分割成十七等分,而由於實 驗的需求這十七等分並不等距,因本文為了得 到軸承座對轉子系統響應的影響,故在靠近軸 承座時將元素分割得較細。

轉子系統轉軸之邊界條件,因本文假設為 簡支端(u = 0, v = 0),即 $x \land y$ 方向位移為 零,故 $u_{x_{1,16}} = 0$ 、 $u_{y_{1,16}} = 0$ 。而在節點 19 及 20 為固定端,即 x、 $y \land q_{y}$ 方向等於零。

圖四、轉子系統轉軸之有限元素模型

(2) 實驗模態分析

本實驗的主要目的是要得到其系統之模 態參數,其實驗的動作原理為,利用衝擊鎚對 轉軸激振,利用加速度計作感測器,量取結構 之響應訊號,經過電荷放大器將訊號傳入雙頻 道訊號分析儀,由訊號分析儀對輸入之訊號作 快速傅立葉轉換,求得轉軸的頻率響應函數和 關聯性函數,最後再將所得到的頻率響應函數 傳入 CADA-PC 軟體作曲線嵌合(curve fitting) 工作,則可得到轉軸模態參數,即自然頻率、 阻尼比和振型等。敲擊時我們採用固定衝擊槌 的敲擊位置,移動加速度計量測位置以量取各 點之響應。其實驗步驟如下所示:

將轉軸分割為 17 等分,每等分以 6 cm
 為主,在靠近軸承的左右兩端各加一點,以量測到軸承座對轉子系統的影響。分割的方式如圖五所示,各量測點距離如表二。

圖五、轉軸分割圖

表二:各點間距表

編號	間距	
2~3、3~4、4~5、15~16、16~17、	2 cm	
17~18		
其他各點	6 cm	

- 2、將衝擊槌以導線街於訊號分析頻道 A 之"Acc Input"上。
- 加速度計以導線經過電荷放大器一頻 道 B 之"Direct Input"上。
- 4、 實驗的架構如下圖六所示。
- 5、 衝擊槌敲擊轉軸(敲擊編號6號的點)
- 觀察頻道 A 之時間域及頻率響應函數 (Frequency Response Function)。
- 7、將所得結果輸入CADA-PC做曲線嵌合。
- 本實驗所使用之實驗儀器及其型號如 表三。

圖六、模態分析儀器架構圖

表三: 實驗儀器一覽表

儀器名稱	型號
雙頻道訊號分析儀	BK 3550
衝擊槌	BK 8202
加速度計	PCB 309A
電荷放大器	PCB 480E09
曲線嵌合軟體	LMS CADA-PC
轉速量測器	HT4100

(3) 臨界轉速驗證

轉子系統之「臨界轉速」, 恰為該轉軸之 側向振動「自然頻率」所對應之轉速, 若轉軸 在接近「臨界轉速」運轉時, 會產生異常之振 動, 此也是結構「共振」之一種現象, 當轉子 系統達到共振時, 其原本自身的振動量將會加 倍,這也是造成機器損壞的主要原因。 本實驗便是利用此原理來量測本轉子系 統的臨界轉速,本文以量測不同轉速所產生的 振動量,以得到轉速與振動量的關係,當振動 量有異常增大時其所對應的轉速便是本轉子 系統的臨界轉速。其實驗步驟如下所示:

- 將加速度計以導線經過電荷放大器一 頻道 B 之"Direct Input"上。
- 約加速度計以蜂膠黏於左端的的軸承 正上方。
- 3、利用變頻器控制轉軸轉速。
- 逐漸增加轉速,並量測其各個轉速的頻 率響應函數(Frequency Response Function)
- 5、將所的結果紀錄下來,並繪成頻率、轉 速關係圖。
- 本實驗架構如圖七所示,所用之實驗儀
 器及型號如表三。

四、結果與討論

本文的結果數據主要是得到線性彈簧與 旋轉彈簧真正的 k_y 值與 k_q 值,使得有限元素 分析所得之自然頻率(\mathbf{W}_n)與振型(\mathbf{f}_n)和實驗 分析所得之自然頻率($\hat{\mathbf{W}}_n$)與振型($\hat{\mathbf{f}}_n$)能夠吻 合。並且做臨界轉速的測試及驗證,以得到其 對應的轉速與實驗的結果相吻合。

(1) 有限元素分析之結果

本文是藉著以10的倍數來改變彈簧參數

 $k_y \mu k_q$ 的值以進行轉子系統轉軸之側向振 動模態分析,獲得轉軸之自然頻率 W_n 與振型 f_n ,且希望能得到轉軸與聯軸器及馬達配合 間剛性特性的真正 k_y 值與 k_q 值,使得有限元 素分析結果與實驗分析結果能夠吻合,其結果 如表四及圖八所示。

而由結果數據表四所示,假使設定的 k_y 值與 k_q 值不同其分析所得之自然頻率 W_n 也 就有所相異,且由改變 k_y 值與 k_q 值的大小來 觀察的話會發覺到 k_q 值對結果的影響較大, 並且再由三組設定的 k_y 值與 k_q 值的振型 圖,如圖七的振型圖來看的話可發覺到,不管 所設定的 k_y 值與 k_q 值相不相同,其分析所得 之振型圖皆相同。因此本文由這兩個關係與實 際結構的情況加以研判證實發現都蠻符合 的,故以有限元素分析轉子系統轉軸符合其實 際情況。

自 然 頻 率 值		振型 Mode 1	振型 Mode 2	振型 Mode 3	振型 Mode 4
ку	k q z				
0	0	54.585	205.55	391.09	602.28
0	100	57.398	208.263	393.070	605.071
100	100	57.403	208.272	393.083	605.091
1000	1000	67.630	220.737	403.041	619.989
400	700	65.698	218.020	400.743	616.419
1000	800	66.432	219.032	401.589	617.723
1000	600	64.867	216.910	399.829	615.017
800	600	64.863	216.905	399.823	615.012
100	1000	67.618	220.716	403.017	619.953
100	800	66.421	219.041	401.574	617.700
300	800	66.414	219.028	401.577	617.705
300	1000	67.621	220.719	403.020	619.958
500	1000	67.223	220.723	403.023	619.962

表四:轉子系統轉軸側向振動模態分析之結果

圖八、不同 k 值之模態振型圖

(2) 實驗模態分析之結果

由實驗模態分析所量得的頻率響應函 數,經輸入CADA-PC 作曲線嵌合後可得到轉 子系統的模態參數—自然頻率 \hat{W}_n 、振型 \hat{f}_n (如圖九)、阻尼 \hat{x}_n (如表五)。由於在有限 元素模態分析分析是無法得到阻尼比的,故本 實體模型之阻尼比只能利用參數預估法求得 阻尼比,而在實驗量測中,加速度計響應加入 對數函數(Exponential function)之加權函數 (weighting function)之效應,所以加速度計 所量得之訊號會產生加重效應,因此實驗所得 知之阻尼比並非真正實體模型之阻尼比,故必 須加以修正。

應用有限元素從事轉子系統轉軸之側向 振動模態分析,其分析所得之自然頻率 W,與 實驗模態分析所得之自然頻率 W, (如表六所 示)比對後發現結果並不吻合,故本文推斷可 能所設定之 k_y 值與 k_{α} 值並不是轉軸與聯軸 器及馬達間剛性特性真正的k值,因此才會有 此結果出現,但若單純由有限元素分析的振型 圖與實驗分析的振型圖來加以比對的話(如圖 十所示),發覺其振型圖蠻吻合的,由振型圖 上發現在產生共振的地方其位子都在同一個 節點上,故以此推斷本文的研究方法應該正 確。且由實驗所得之阻尼有過高的現象,經研 究討論後論定為本文考慮之轉軸其邊界條件 假設為簡支端並不符合實際情況,故轉軸與軸 承座間的剛性特性也必須以線性彈簧與旋轉 彈簧來模擬之才能符合轉子系統實際情況。 表五: 實驗阻尼之結果

また)	また、 入			結構實際	
翈八	判八			阻尼比	
實驗	白好店安	實驗	百述安	修正阻尼	
阻尼%	日然娯学	阻尼			
2.11	64.83	0.0211	3.030303	2.102560726	
4.33	200.81	0.0433	3.030303	4.327598286	
12.2	343.55	0.122	3.030303	12.19859616	
14.95	512.63	0.1495	3.030303	14.94905919	

圖九、實驗模態分析之振型圖

表六、	各方式所得之自然頻率比較表	
18/1	百万环府在百然频率比较较	

名稱	有限元素分析		實驗模態分析		臨界轉速驗證	
W _n	Hz	rpm	Hz	rpm	Hz	rpm
f1	67.630	4058	64.83	3889	62.5	3750
<i>f</i> 2	220.737	13244	200.81	12048	199.32	11959
<i>f</i> 3	403.041	24182	343.55	20613		
f 4	619.989	37199	512.63	30758		

(3) 臨界轉速驗證之結果

經過實驗模態分析之後,可由 BK3550得 到實驗模態振型圖,若將其與理論模態振型圖 相互比對可得知,各自然頻率下所對應的模態 振型圖是十分相似的;另一方面,由圖十一之 轉速與振動量關係圖可知,轉速在大4000rpm 與16000rpm時有較高的振動量,這與本實驗 的靜態分析所得,在3889rpm與12048rpm時 出現臨界轉速產生共振是吻合的,故與本實驗 之目的初步而言是成功的。

五、結論與未來建議

本文所製作之轉子系統教學模型是由單 相交流電刷馬達、交流變壓器、馬達座、連軸 器、轉速測量計、主軸、軸承總成、主基座、 安全罩所組成。

本文是應用 ANSYS5.5 軟體從事轉子系 統轉軸之側向振動模態分析,以獲得其自然頻 率 W_n 與振型 f_n ,並再與雙頻道頻譜分析儀進 行的實驗模態分析所得之自然頻率 W_n 與振 型 \hat{f}_n 做比對,並且做臨界轉速的測試以驗證 在自然頻率時產生的共振所對應之轉速是否 吻合。

結果顯示,有限元素分析所得之自然頻率 W_n 與實驗模態分析所得之自然頻率 W_n 並不 吻合,但若單純以振型圖來比對的話發現蠻吻 合的,為何有此結果出現,經本文研究探討後 論定,除了無法獲得轉軸與聯軸器及馬達間剛 性特性的真正 k_y 值與 k_g 值外,本文考慮之轉 軸其邊界條件假設為簡支端也並不符合實際 情況,因此才會使得有限元素分析結果與實驗 模態分析結果不吻合。

而由臨界轉速的測試結果顯示驗證,在轉 子系統產生共振時所對應之轉速與實驗模態 分析所得之自然頻率 \hat{W}_n 是吻合的,故得知在 接近轉子系統的自然頻率時會有共振的現象 產生,且在自然頻率時所產生的共振現象為最 明顯。

由於有限元素分析結果與實驗模態分析 結果並不吻合,故本文認為並未達到此研究計 畫的目標,因此建議未來能循序進行以下幾項 研究,如下:

- 重新架構轉子系統之有限元素模型以進 一步作最佳化分析獲得真正的彈簧參數
 k、值與k_a值。
- 將變壓器換成變頻器以方便轉速的控
 制,並且接上可程式系統以及在電腦上以
 視窗化介面來控制方程式達到此教學模
 型的目的。
- 將單向交流馬達換成雙向或者三向交流 馬達。

4. 應用此轉子系統以針對軸承鬆動或損

壞、軸承不對心、有偏心負荷、轉動不平 衡等各種不同的情況來加以研究探討對 轉軸有何影響。

- 應用此轉子系統分析各種情況所得之振 型圖去判斷工具機主軸的工作情形,做進 一步的遠端監測控制,以達到預測性維護 保養。
- 六、參考文獻
- [1] 王 村, 1998,「實驗模態分析」,國立屏 東科技大學。
- [2] 王 村,2000,「振動學」,全華科技圖書 股份有限公司,第二版。
- [3] 白志亮, 1995,「旋轉機械之振動診斷技術 與統計分析」, 技術與訓練, 第 89-98 頁。
- [4] 李安謙、施元斌,1995,「離心幫浦之旋轉 機械振動分析」,*機械工業*,146期,第 165-178頁。
- [5] 朱清流, 1988,「有限元素分析法用於工具 機動態分析的應用」, *機械月刊*, 153 期, 第 114-118 頁。
- [6] 朱惠民, 1987,「有限元素法的解析」, *機 械月刊*, 149期,第86-90頁。
- [7] 林其章, 1996,「軸裂振動分析」,興大工 程學報,第 85-93頁。
- [8] 宮紹華, 1991,「泵浦振動檢測」, 金屬工業,第 111-117頁。
- [9] 宮紹華, 1991,「利用振動值量測做機械狀 況監測」, 機械月刊, 25期,第65-79頁。
- [10]陳興,1995,「振動量測」,*機械月刊*,244 期,第184-215頁。
- [11]黃崑峰,1993,「預測性維護與振動分析
 法」,機械月刊,157期,第1頁。28-141
 頁。
- [12]黃錦鐘,1987,「振動分析法的設備診斷及 治療技術—迴轉機器的現場動平 衡校正技術」,全華科技圖書股份有限公 司,第一版。
- [13] 賴育民、林啟豪、謝忠祐, 1998, 「ANSYS

電腦輔助工程分析」,儒林圖書 有限公司,第一版。

- [14]劉運鴻,1995,「機械系統自然頻率之移動」, *台電工程月刊*,568期,第55-64 頁。
- [15]劉運鴻,1995,「低頻振盪與扭轉振動」, *台電工程月刊*,572期,第17-34頁。
- 七、誌謝
- 感謝:

屏東科技大學機械系王 村教授對本組盡心 的指導。

屏東科技大學機械研究所胡華良學長對本組 指導、幫助與督促。

屏東科技大學機械系振動噪音實驗室所有學 長的指導。

國立內埔農工機械科提供機械加工的使用。 永達技術學院機械系提供機械加工的使用。

八、附錄

轉子系統教學模型實體圖 1

轉子系統教學模型實體圖 2

轉子系統教學模型實體圖 3