自動化倉儲系統之下導軌結構分析

張文陽、王柏村

國立屏東科技大學 機械工程系

摘要

在倉儲系統中,其主結構可分為倉架本體、搬運 機與基座。其中基座乃是支撐搬運機的重量以及搬運 機做輸送動作時的重要結構。本報告乃是應用有限元 素分析套裝軟體 ANSYS,探討單元負載式自動化倉 儲系統之搬運機自重對於其位於基座上的下導軌做 靜態結構之分析。本研究中以樑元素模擬實際的鋼骨 結構,將搬運機之自重分成兩個集中力分別作用於下 導軌上,並使用接觸元素模擬基座與地面之間的支撐 情形,藉由改變邊界條件模擬基座的支撐方式為固定 支撐或浮動支撐。分別對於基座之固定方法與搬運機 在不同位置時,對下導軌與基座的位移與應力作評 估。結果顯示當基座的固定方法為固著於地面時其應 力值小於基座浮動於地面約 19%。當搬運機在不同位 置時,所得到的各基礎點之反力以及各結構桿件的應 力值與變形量,可做為基礎結構結構改善與研究設計 之參考依據。

一、前言

在現今講求自動化的工業環境中,自動化倉儲系 統的研究與發展也日趨重要。自動倉儲系統隨著國內 自動化程度的發展已經愈來愈普及化。而自動倉儲系 統的研究,國內皆偏重於物料管理與生產力之提昇。 對於結構分析是非常缺乏的,因此在這次的報告中, 針對一自動化倉儲系統之搬運機自重對於其基座影 響作一分析。在做理論分析時,利用桁架結構的節點 及斷面求解各結構桿件的反力,然後考慮靜力破壞與 挫曲破壞的可能性。本文將利用有限元素法進行理論 分析。有限元素法最早是用於航空器結構分析。隨著 有限元素分析軟體的問世與電腦科技的發展,有限元 素法也逐漸使用於學術界與工業界。

本文使用的有限元素分析軟體為美商 Swanson

Analysis Systems 公司所研發的 ANSYS 有限元素分 析軟體,該軟體可進行靜態結構分析、振動結構分析 模態分析、熱傳導分析、流體力學分析、最佳化設計 等等[4]。例如化工廠倉儲系統的桁架結構分析[3]、 壓電材料的熱傳分析[3]、振動片的有限元素分析[3]。

本文的目的為應用有限元素之觀念,配合有限元 素分析軟體 ANSYS 的使用,對國立屏東科技大學機 械工程技術系內現有之單元負載式自動化倉儲系統 作一分析,檢查是否會有破壞發生在下導軌上以及支 撐架的固定方式對位移與應力所造成的影響。

二、問題定義與分析目標

有一單元負載式倉儲系統,其搬運機如圖1,討 論當搬運機在 y 軸上之不同位置,對下導軌所造成的 彎曲影響。下導軌位於基座上,基座的尺寸尺寸圖, 如圖 2 所示。本文的主要分析目標為:

- 比較支撐架固定於地面與支撐架浮動於地面之 差別。
- 2、 在導軌上的最大撓度變形量。
- 3、 最大撓度變形量的所在位置。
- 4、最大應力是否會對導軌或支撐架產生破壞。

圖.1 自動倉儲系統整體示意圖

三、數學模式化與分析方法 本文中所採用的基本假設:

- 1、 採用3D之樑元素進行架構各結構桿件。
- 2、可利用樑元素的物理特性(Real Constant)設定值, 使其等效於所要模擬的實際結構。
- 3、使用接觸元素模擬支撐架與地面接觸,探討支撐
 架固定於地面與支撐架浮動於地面。
- 4、 搬運機藉由兩個導輪與導軌接觸,故可將搬運機
 之總重量分成兩個集中力作用於導軌上。作用位
 置根據基座y軸的長度劃分為4等份。

由以的基本假設可分類成8種狀況:

Case A1:支撐架固定於地面,搬運機位於導軌起點。 Case A2:支撐架固定於地面,搬運機位於導軌1/4處。 Case A3:支撐架固定於地面,搬運機位於導軌1/2處 Case A4:支撐架固定於地面,搬運機位於導軌終點。 Case B1:支撐架浮動於地面,搬運機位於導軌起點。 Case B2:支撐架浮動於地面,搬運機位於導軌1/4處。 Case B3:支撐架浮動於地面,搬運機位於導軌1/2處。 Case B4:支撐架浮動於地面,搬運機位於導軌終點。

圖 2. 基座尺寸示意圖

四、有限元素模型

1、元素型式

本文中所採用的元素為 3D 結構樑元素與接觸元 素,在 ANSYS 軟體中的編號分別為 Beam4 與 Contac52[4]。元素特性如表 1 所示,元素結構如圖 3 與圖 4 所繪。

2、 材料性質 (MATERIAL PROPERTIES)

基座上所使用的為鋼骨結構,其材料性質為: Young's modulus(楊氏系數) $EX = 200 \times 10^9$ Pa Density(密度) DENS=7850 kg/m^3 Poisson's ratio(浦松比) NUXY=0.33

3、物理特性(Real Constant)

本文中利用 Beam4 與 Contac52 的物理特性模擬 實際的鋼骨結構以及支撐架的固定方式。實際鋼骨結 構為口字樑(如圖 5)以及口字樑與 I 型樑(如圖 6)的組 合樑(如圖 7),物理特性的計算如下式 1 到式 11 所示 [1]。物理特性經整理後如表 2 所示。

A、口字樑

面積: $A_1 = w \times h - (w - t) \times (h - t)$ (1) 極慣性矩:

$$I_{zz1} = \frac{1}{12} \left(w \times h^3 - (w - t) \times (h - t)^3 \right)$$
 (2)

$$I_{yy1} = \frac{1}{12} \left(h \times w^3 - (h-t) \times (w-t)^3 \right)$$
(3)

B、I 型樑

面積:

 $A_2 = t_1 \times w_1 + (h - t_1 - t_2) \times t + t_2 \times w_2 \quad (4)$ 極慣性矩:

$$I_{zz2} = \frac{1}{12} \left(t_1 \times w_1^3 + (h - t_1 - t_2) \times t^3 + t_2 \times w_2^3 \right)$$
(5)

$$I_{yy2} = \frac{w_1 t_1^{3}}{12} + w_1 t_1 \times \left(\overline{Z} - \frac{t_1}{2}\right)^{2} + \frac{t(h - t_1 - t_2)^{3}}{12} + t(h - t_1 - t_2) \times \left(\overline{Z} - \frac{(h - t_1 - t_2)}{2}\right)^{2} + \frac{w_2 t_2^{3}}{12} + w_2 t_2 \times \left(\overline{Z} - \frac{t_2}{2}\right)^{2}$$
(6)

C、組合樑

面積:
$$A = A_1 + A_2$$
 (7)
極慣性矩:

$$I_{zz} = I_{zz1} + I_{zz2} \tag{8}$$

$$I_{yy} = I_{yy1} + I_{yy2}$$
(9)

圖 3. Beam4 元素結構說明圖

圖 4. Contac52 元素結構說明圖

表 1. 元素特性說明表

元素名稱	節點數(Nodes)	自由度(Degrees of Freedom)	物理特性(Real Constant)			
Beam 4	I, J, K	UX, UY, UZ, ROTX, ROTY, ROTZ	AREA, IZZ, IYY, TKY, THZ			
Contac 52	I, J	UX, UY, UZ	KN			

圖 5. 口字樑

圖 6. I 型樑

圖 7. 組合樑 表 2. 物理特性一覽表

Real Constant	AREA(mm ²)	IZZ(mm ⁴)	IYY(mm ⁴)	TKY(mm)	TKZ(mm)	KN
1	1288	217209.83	684853.6	75	50	
2	414	125542	39954.5	25	50	
3						0.06×10^{9}

4、分割方法

將銷接處、受力位置以及支撐架連接結構處,使 用直接架構法架構節點,再以元素連接各節點完成初 步的有限元素模型。如圖8與圖9所示

5、位移條件

Case A 的類型是模擬支撐架固定於地面,故設定 邊界條件在支撐架連接結構處,並限定 6 個自由度 (All DOF),如圖 8 所示。

Case B 的類型是模擬支撐架浮動於地面,需使用 Contac52 模擬支撐架與地面之間力的傳遞。將邊界條 件在支撐架與地面連接處,並限定 6 個自由度(All DOF),如圖 9 所示。由於 Beam4 與 Contac52 的自 由度不同。在進行有限元素理論分析時,會產生相容 性 (Compatibility)問題,所以要使用限制方程式 (Constraints Equation)進行修正。本文中所使用的限制 方程式,如公式(10)所示。限制方程式的使用為每三 個節點一組,可參閱圖 9 中, Contac52 與 Beam4 接 合處的放大圖。

$$\boldsymbol{q}_{y3} = \frac{\boldsymbol{q}_{y2} + \boldsymbol{q}_{y4}}{2} \tag{10}$$

6、負荷

因搬運機與下導軌之間藉由兩個導輪接觸,故可 將搬運機之總重量分成兩個集中力作用於下導軌 上。因為導輪所承受的重量不同,故將其配重分成 60%與40%。搬運機之總重量為1432083.42g,故兩 個集中力分別為F1=1002458.394g, F2=429625.026g,為了瞭解搬運機在不同位置所造成 之影響,故將作用位置根據基座y軸的長度劃分為4 等份,(如圖10中所示)。

- 1、 搬運機位於下導軌起點。
 - { F1(100,220,0) ; F2(850,220,0)}
- 2、 搬運機位於導軌 1/4 處。
 - { F1(337.5,220,0) ; F2(1087.5,220,0)}
- 3、 搬運機位於導軌 1/2 處。
 - { F1(1050,220,0) ; F2(1800,220,0)}
- 4、 搬運機位於導軌終點。
 - { F1(2100,220,0) ; F2(2850,220,0)}

圖 8. 支撐架固定於地面時之有限元素模型示意圖

圖 9. 支撐架浮動於地面時之有限元素模型示意圖

7、求解

樑元素(Beam4)

樑元素中首要的觀察資料為節點位移資料與元 素應力分佈,其中元素的應力分佈可分為最大應力 (拉伸應力 *Smax=Sdir+Sbzt*)與最小應力(壓縮應力 *Smin=Sdir-Sbzt*),如圖 11 所示,在本文中所採用的 為最大應力。 接觸元素(Contac52)

接觸元素中所求得的解為節點位移資料與元素 應力分怖,其元素應力為正向力(Normal Force)。在 本文中其正向力可視為基礎反力。

6

圖 11. 樑元素的最大應力與最小應力

五、結果與討論

將所得到的資料加以整理後,獲得基礎反力、靜 力安全係數與挫曲安全係數以提供改善結構安全時 的參考依據。表 3為 Case A 與 Case B 的最大應力與 z 軸之變形量。由表 3 可發現導軌上之最大變形皆發 生在自重所作用處(導輪的所在位置),其中以搬運機 位於導軌 1/4 處時產生的變形量最大。Smax 為最大 應力; Max. Uz 為翹曲變形之數值。如圖 12 為最大位 移圖。圖 13 為最大應力發生位置參照圖。

圖 12. 最大位移圖

1、基礎反力分析

基礎反力可做為結構支撐處的改善依據及設計 之參考,並可做為支撐架設計之參考。由於基礎所受 的力主要在z方向,因此只考慮z方向的受力。在表4 中,基礎反力皆相差在5%之內,故可推測Case A與 Case B之基礎反力相當。在表4中的節點編號可參考 圖8與圖9。

2、靜態應力分析

為防止結構桿件發生破壞受到過大的拉伸應力

時發生破壞,故安全係數必須要大於1。根據表格3 為 Case A 與 Case B 的最大應力值,可以求出靜力破 壞的安全因數。

$$F_{safety} = S_{allow} / S_{max} \tag{11}$$

其中:

 F_{safety} :靜力破壞安全因數

- S_{max} :最大應力
- S_{allow} :容許應力(在本文中,材料的容許應力為 253Mpa)

根據式(11)對靜力破壞的安全係數做定義。求出之靜 力破壞系數皆遠超過 1,故此結構體為安全設計,如 表5所示。

3、挫曲破壞分析

對桁架結構而言,由於多為細長桿件,當桿件受 到一壓縮應力時,桿件會產生側向撓曲,在結構應力 遠低於材料之容許應力時,即產生斷裂破壞,則稱為 挫曲破壞(*Buckling failure*)。桁架兩端多為銷接,銷 接之挫曲破壞可以利用尤拉挫曲公式判斷(式(12)到 式(14))。

$$P_{cr} = \frac{\boldsymbol{p}^2 EI}{L^2} \tag{12}$$

挫曲之臨界應力可以下式判斷:

$$\mathbf{s}_{cr} = \frac{p_{cr}}{A} \tag{13}$$

挫曲之安全係數:

$$S_{cr} = \frac{S_{cr}}{S}$$
(14)

其中:

- P_{cr} : 挫曲臨界載重
- E:楊氏係數
- I:斷面極慣性矩
- L:桿件長度

 \boldsymbol{S}_{cr} :挫曲臨界應力

- A:面積
- S_{cr} : 挫曲之安全係數
- **S**:承受應力

求出挫曲安全係數列於表六中,可發現挫曲安全係數 皆大於1,故此結構體為安全設計。

4、Case A 與 Case B 之比較

比較 Case A 與 Case B 的不同,也就是比較支撐 架固定於地面與支撐架浮動於地面時的不同。在本文 中,所討論的倉儲系統為支撐架浮動於地面。故以 Case B 對 Case A 做比較。將表三中的數值繪成折線 圖可發現其相差值(如圖 14 與圖 15)。再以 Case B 為 基準對 Case A 做比較,換算成百分比(如表七所示), 發現 Case B 的平均位移值高出 Case A 百分之 50.5; 最大應力高出百分之 19.35。因此當進行架設自動倉 儲系統時,應選用支撐架固定於地面之固著方式,取 代目前支撐架浮動於地面的設計。

5、總結

由分析結果可知,靜力與挫屈不致於對基座產生 破壞,但實際上基座的桿件因運送單元在軌道上往返 來回,使得基座的桿件所承受的是變動性的應力,桿 件應對疲勞破壞方式做設計上的考量。許多材料所能 容許疲勞破壞遠低於材料抗拉破壞或降伏破壞,因此 若針對疲勞破壞做更進一步探討,可得到更為精確之 結果。

	Case A1	Case A2	Case A3	Case A4	
$\operatorname{Smax}(N/m^2)$	4375300	7354300	3658800	4394400	
Smax發生位置	2	2	4	7	
(Element number)					
Max. Uz (meter)	0.26661×10^{-4}	0.47732×10^{-4}	0.17654×10^{-4}	0.14329×10^{-4}	
	Case B1	Case B2	Case B3	Case B4	
$\operatorname{Smax}(N/m^2)$	5254100	8123300	4638100	5644300	
Smax發生位置	2	2	4	7	
(Element number)					
Max. Uz (meter)	0.7322×10^{-4}	0.9110×10^{-4}	0.5533×10^{-4}	0.4396×10^{-4}	

表.3 Case A與Case B的最大應力與z軸之變形量

圖 13. Case A 與 Case B 之最大應力值發生位置參照圖

古愷聖綽歸		2		10			15		22	27		32		37	
又好和洲奶		4		12			20	2	25	30		35		39	
Case A1		513.53		43	5.53 16		56.42	30.296		37.99	7.991 43		6.622		23.264
Case A2		295.	82	51	2.75	27	71.17	74.	.109	33.39	96	42.134		23.514	
Case A₃		21.9	69	21	0.27	4	46.0	26	8.79	244.7	4 43		3.074		16.814
Case A4		36.9	38	61	.365	24	24.961		.380	435.21		239.13			-1.6678
		69)	7		73			75 77			79			81
又1牙和闷啊加		70)		72		74	7	76		8		80		82
Case B₁		499.	54	45	6.21	15	55.83	42.	.137	33.62	23	41.888			22.4333
Case B ₂	ase B ₂ 277.46		46	54	48.85 2		39.86	92.	.573	33.260		38.973			21.909
Case B₃	se B ₃ 15.741		41	242	2.98 39		99.55	29:	5.22	228.7		63.063			6.937
Case B₄	ase B ₄ 34.567		67	57.	57.515		7.186	10	7.48	382.7	32.70 25		56.87		0.0
	表 5. 靜力破壞安全係數														
Case		Α	1	A_2	A ₂		A ₃ A			\mathbf{B}_1		B ₂	B	3	B ₄
<i>F</i> _{safety}		57	.8	34.4		69.1		57.6		48.2	31.1		54.5		44.8
						表6.	挫曲	之安全	係數						
Case	A	A ₁ A ₂		A	A 3	.3 A			B ₁	B ₂		B ₃		B_4	
S _{cr}	9.	.04	5.	38 10.82		.82	9.01		7	7.53	4.87		8.53		7.01
表 7. Case A 與 Case B 的相差百分比(%)															
相差百分比(%)				Case 1		Case 2			C	Case 3		Case 4		平均	
Smax				20.1			10.5			26.8		28.4		21.4	
Uz				63.6			47.6			68.1		67.4		61.7	

表4. 各支撐點之反力(N)

圖 14. 在 Case B 中之應力值大於 Case A 中的應力值

圖 15. 在 Case B 中之位移值大於 Case A 中的位移值

六、結論

針對倉儲系統下導軌做有限元素分析後,得到基礎反 力、靜力破壞安全因數與挫曲之安全因數可得到下列 結論:

- Case A 與 Case B 之基礎反力相當。由基礎反力可 得知支撐點的反力,其數據可作為設計或改善運 送結構之基座的參考數據。
- 導軌上之最大變形皆發生在自重所作用處(導輪 的所在位置),其中以搬運機位於導軌1/4處時產 生的變形量最大。
- 7、靜力破壞係數與挫曲安全係數皆大於1結構體為 安全設計。而由分析中,可得知靜力破壞係數為 過設計(Over Design)。
- 4、架設自動倉儲系統時,因選用支撐架固定於地面 之固著方式為考量。

藉由此次的報告,可充分瞭解桁架結構受力作用 時的有限元素分析流程。並瞭解 3D 樑元素、接觸元 素與限制方程式之特性,作為往後架構相同元素之依 據,分析所得之數據,可作為日後設計時的參考依據。