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Nomenclatures 
 

)(),( tatxa ii =  predicted acceleration response of beam 

)(ˆ),(ˆ tatxa ii =  measured acceleration response of beam 

A  beam acceleration amplitude 
bA  the cross sectional area of beam 

bb  beam width 

bC  damping coefficient of beam  

bE  Young’s Modulus of beam  
),( txF  force function acting on beam 

jF  the j-th impact force amplitude 

nf  the n-th natural frequency of beam 

sf  harmonic excitation frequency 

bI  cross sectional moment of inertia of the beam 

bL  beam length 
N  number of modes 

tN  number of time data points 

tQ  objective function 
)(tqn  modal coordinate 

bt  beam thickness 
),( txw  beam lateral displacement  

jx  the location of the j-th harmonic force in x-coordinate 

ix  the location of the i-th accelerometer sensor in x-coordinate 

ss fπω 2=  excitation frequency 

nn fπω 2=  the n-th natural frequency of beam 

bρ  beam density 

nξ  the n-th modal damping ratio of beam 
)(xnφ  the n-th displacement mode shape of beam 

)(, jnjn xφφ =  the n-th hammer mode shape function of beam at the j-th location of the hammer actuator



 

 
ABSTRACT 
 
This paper presents the force prediction for a cantilever beam subjected to harmonic excitation. With the 
assumption of the structural modal parameters known a priori, the acceleration response of the beam due to the 
harmonic excitation is also measurable and used as the input for the prediction model. The force prediction 
algorithm can be developed to determine the harmonic force amplitude and its location, simultaneously. The beam 
response excited by the harmonic force is first derived. The optimization problem to determine the harmonic force 
amplitude and location is then formulated. The objective function can be defined as the mean square errors 
between the predicted and measured acceleration response, while the design variables are identified as the force 
amplitude and its location number associated with the structural mode shape. Theoretical simulation is presented 
to demonstrate the feasibility and correctness of the developed force prediction algorithm. Experimental verification 
is also carried out to validate the prediction model. Results show that the harmonic force amplitude and its location 
can be reasonably predicted. The developed methodology can be easily extended to other structures or applied by 
using different kinds of sensing devices for harmonic force prediction. 
 
Keywords: force prediction, harmonic force, cantilever beam, optimization 
 
I. Introduction 
 
Force prediction, identification or determination has drawn much attention for engineering design and applications. 
Stevens [1] gave an overview for those early-related works. Wang [2] not only provided with an extensive review 
about the subject but also attempted to develop a general approach in force prediction problem for arbitrary 
structures. The general idea of force prediction model was presented. He addressed several concerns in force 
prediction such as structural modeling techniques, solution methods of response estimation and types of sensors 
used in measuring response. The general optimization methods in determining the impact and harmonic forces 
were developed. This paper will modifies Wang’s approach [2] in predicting the unknown harmonic force acting on 
a cantilever beam. 
 
Lots of mechanical components are in harmonic excitation conditions, in particular, for rotating machineries. Such 
harmonically excited forces, for examples due to imbalance or hydraulic flow, may not practically measured but 
interested and crucial for structural design or diagnosis. Verhoeven [3] constructed synthesized transfer functions 
from theoretical modal analysis to estimate the excitation forces of rotating machines. Vyas and Wicks [4] adapted 
the similar approach to determine the turbine blade forces. Karlsson [5] presented the prediction of complex 
amplitudes of harmonic force by assuming the force spatial distribution available a priori.  
 
In force prediction, the force location is also of great interest. The pattern match technique is generally adopted to 
search the unknown force location. Moller [6] tentatively gave the spatial shape and position of harmonic point load 
to match the load location. Wu et al. [7] identified the impact force location by comparing the structural response 
among possible candidate locations. Similarly, Choi and Chang [8] determined the impact force time history and 
location in two separate solution loops. Doyle and his coworkers [9-11] solved for the time history and location of 
impact forces separately. Recently, Wang [2] developed an optimization method in predicting the unknown impact 
and harmonic forces acting on arbitrary structures. The force contents including the force amplitude and its location 
can be determined simultaneously. Wang and Chiu [12] followed Wang’s formulation [2] and experimentally 
showed the determination of amplitude and location of the unknown impact force acting on simply supported beam 
in one loop of solution. This paper slightly modifies Wang’s method [2] to develop the prediction model for unknown 
harmonic force. Section II details the beam response analysis and the development of harmonic prediction model. 
Sections III and IV describe the implementation of prediction program and the experimental work, respectively. 
Section V shows both the theoretical and experimental prediction results, respectively, and demonstrates the 
feasibility of the developed force prediction model. 
 
II. Theoretical Analysis: 
2.1 Beam Response analysis 
 
Consider a uniform cantilever beam as shown in Figure 1(a). The system equation of motion for lateral vibration 
analysis can be written [13]: 
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If the applied force is harmonic acting at jxx = , the force function can be expressed: 
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jj
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where Delta function ( )jxx −δ  represents the harmonic force location. From expansion theorem, the beam 
response can be assumed: 

( ) ( ) ( ) ( )∑∑
∞

=

∞

=

==
11

,
n

ti
nn

n
nn

seQxtqxtxw ωφφ  (3.) 

By the substitution of Equation (3) into Equation (1), the beam displacement at ixx =  can be derived: 
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One can observe that beam displacement is functions of modal parameters, i.e. nω , nξ  and nφ , as well as the 
harmonic force amplitude jF , excitation frequency sω  and its location jx . The beam acceleration can also be 
obtained: 
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It is noted that in numerical simulation only N modes are included to calculate the beam acceleration. 
 
2.2 Development of Harmonic Force Prediction Model 
 
The conceptual diagram for force prediction model is depicted in Figure 2. For a structure subjected to unknown 
force, the sensor can detect the structural response as the input to the prediction model. Once the system modal 
parameters are also known, the force contents, including force amplitude and its location can be determined. This 
work deals with the prediction of unknown harmonic force acting on the cantilever beam. The accelerometer is 
employed to measure the beam response as the input to the prediction model. The system modal parameters, 
including natural frequencies, damping ratios and mode shapes, that can be determined theoretically or 
experimentally are also assumed known. The force prediction model will be developed to determine the force 
amplitude and its location, simultaneously. The optimization problem to predict the unknown harmonic force is 
formulated as follows: 
Objective function:  
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Design variables:  
jFj  ,  (8.) 

When 1=j , )( jn xφ  equal to Nnxn ,...,2,1),( 1 =φ , and etc. The objective function tQ  is defined as the sum of 

square errors between the measured acceleration )(ˆ ri ta and the predicted acceleration )( ri ta over the time range 
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(a) system diagram       (b) test grid points 

Figure 1. Cantilever beam system diagram 



 

from 1t to 
tNt . As shown in Equation (5), the predicted acceleration )( ri ta is functions of structural modal 

parameters and force contents. Structural modal parameter can be known. The unknown force contents are the 
force amplitude jF  and its location jx , while the force excitation frequency sω  can be easily detected. The 
design variables can then be identified as jF  and j . The index j related to the location jx  will result in 

Nnx jn ,...,2,1),( =φ . By the resolution of the optimization problem, the unknown harmonic force amplitude and its 
location index j can be determined simultaneously. The objective of the optimization problem is, therefore, to find 

jF  and j  so as to minimize the sum of square errors between )(ˆ ri ta and )( ri ta . 
 
III. Development of Prediction Program 
 
The force prediction program is developed by Compaq Visual FORTRAN [14]. The optimization subroutine 
DBCPOL [15], which adopts direct search complex algorithm to solve general optimization problem with multiple 
design variables, is used to solve for the design variables, i.e. the force amplitude jF  and its location index j . The 
force prediction program flow chart is shown in Figure 3. There are two program options. Option (I) uses 
theoretically determined modal parameters and the specified harmonic force to generate the theoretical beam 
acceleration response to represent the measured response )(ˆ ri ta  for the verification of the force prediction 
model. Option (II) deals with the experimental validation. Program will read in experimentally measured beam 
acceleration )(ˆ ri ta  to predict the unknown applied harmonic force contents. Both theoretical and experimental 
prediction results will be presented in Section V. 
 
IV. Experimental Setup 
 
Table 1 shows the beam dimensions and its material properties. Conventional modal testing is carried out to obtain 
the beam modal parameters and validated with theoretical modal analysis. The test grid points on the beam are 
shown in Figure 1(b). The first four natural frequencies of bending modes and the corresponding damping ratios 
are listed in Table 2. The first four bending mode shapes are shown in Figure 4. As one can observe the modal 
parameters agree well between theoretical and experimental analysis. 
 
Figure 5 shows the experimental layout for harmonic force prediction. The harmonic force is stimulated by the mini 
shaker (BK4810). Different force levels and excitation frequencies can be controlled by the signal generator 
(BK3016). The accelerometer (PCB352A10) is applied to measure the beam response )(ˆ ri ta  due to the 
harmonic force excitation. The force amplitude jF  can be monitored through the force transducer (BK8200) 
connected to the dual channel analyzer (BK3550). The force prediction program is operated off-line to determine 
the force amplitude jF  and location index j with the input of )(ˆ ri ta  and the determined structural modal 
parameters. 
 
V. Results and Discussions 
5.1 Theoretical prediction results – Option (I) 
 
This section presents the theoretical prediction results by program Option (I). The measured acceleration is 
replaced by the theoretically generated response to validate the developed prediction model. Figure 6 shows the 
prediction results for different force amplitudes and locations. The excitation frequency is 21 Hz30 fff s <=< , 
between the first and second natural frequencies. Figure 6(a) shows the force amplitude prediction results. The 
horizontal axis is the number of iteration in solving the optimization problem. The vertical axis represents the force 
amplitudes. The legend (6,2) in Figure 6(a) denotes i=6, j=2, i.e. the force location at position 2 and the 
accelerometer at position 6. The harmonic forces are applied at position 2, 5, 10 and 15, respectively. The 
horizontal dash line in Figure 6(a) indicates the applied harmonic force amplitude. One can observe that the 
predicted force amplitudes converge to the actual values for the four cases. Figure 6(b) shows the predicted force 
location results. The vertical axis represents the position index j. As one can see, the force position index j also 
converges to the actual applied force location very well. Figure 7 show the similar prediction results to Figure 6 
except that the excitation frequency is 1Hz01.14 ffs ≈= , i.e. close to the first natural frequency. Both harmonic 
force amplitude and its location index converge to the actual values very well too. The force prediction model works 



 

well for different force amplitudes and force locations as well as different excitation frequencies. 
 
It is also interested to know the effect of sensor locations. Figures 8 and 9 show the theoretical prediction results 
considering different sensor location at positions 1, 5, 10 and 12 for off-resonance excitation ( 21 Hz30 fff s <=< ) 
and on-resonance excitation ( 1Hz01.14 ffs ≈= ), respectively. Figure 8(a) shows the force amplitudes converge to 
the applied force levels very well except for the case (i,j)=(10,15) with triangle symbol. In Figure 8(b), the predicted 
force location is also exactly correct except the case (i,j)=(10,15) converging to j=14. This can be the cause that the 
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Figure 3. Force prediction program flowchart 

 
Table 1. Beam dimensions and material properties

Material Steel 
Length ( )bL  0.3 m 
Width ( )bb  0.0394 m 

Thickness ( )bt  0.0016 m 
Density ( )bρ  7870 kg/m3 

Young’s Modulus ( )bE  207×109 N/m2
Poisson ratio ( )bυ  0.292 

Table 2. Natural frequencies and damping ratios 
of cantilever beam  

Mode Experimental
(Hz) 

Theoretical 
(Hz) 

Error 
(%) 

Damping ratio
(%) 

1 14.01 14.728 -4.87 1.3478 
2 90.39 92.298 -2.06 1.123 
3 253.68 258.43 -1.83 0.455 
4 497.07 506.46 -1.85 0.3957 
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Figure 4. mode shapes of cantilever beam 
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Figure 5. Experimental setup for harmonic force 

prediction 



 

sensor location i=10 is near the nodal point of the fourth mode shape as shown in Figure 4(d). Similar results can 
be observed in Figures 9(a) and 9(b) for force amplitude and location prediction, respectively. Only the case 
(i,j)=(12,15) with square symbol cannot converge to the correct values. It is the cause that the sensor location i=12 
is also near the nodal point of the second mode shape as shown in Figure 4(b). It can be noted that with proper 
choice of accelerometer location the prediction model can well predict the harmonic force amplitude and location 
for different excitation frequency conditions. 
 
5.2 Experimental prediction results – Option (II) 
 
Previous section theoretically demonstrates the feasibility of the prediction model in determining the unknown 
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Figure 6. Option (I): prediction results for different force amplitudes and locations, 21 Hz30 fff s <=<  
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Figure 7. Option (I): prediction results for different force amplitudes and locations, 1Hz01.14 ffs ≈=  
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Figure 8. Option (I): prediction results for different sensor locations, 21 Hz30 fff s <=<  



 

harmonic force amplitude and its location simultaneously. This section will present the experimental prediction 
results. The experiments are as detailed in Section IV. 
 
Table 3 shows the prediction results for different force amplitudes and locations, when 1Hz01.14 ffs ≈=  near the 
first resonance excitation. Figure 10 shows the typical convergence curves for the predicted force amplitudes verse 
the number of iteration, and Figure 11 shows the predicted locations. As seen from Figure 10, the convergence 
curves vary up and down along the actual value and finally converge close to the actual force amplitudes. The 
prediction errors of force amplitudes as shown in Table 3 are within ± 12% . From Figure 11 and Table 3, the force 
location is shown correctly predicted except the case (i,j)=(9,3) with force amplitude jF =0.713 N. However, the 
predicted location j=4 is near to the actual location j=3. 
 
Table 4 and Figure 12 show more cases for different force locations. The sensor is fixed at position 12, and the 
harmonic forces are applied at positions 2, 3, 4 and 5, respectively. From Table 4, the maximum prediction error of 
force amplitude is 13.99% for (i,j)=(12,5). The location prediction can be very well as observed in Figure 12. There 
are about 50 iterations to get convergence solution for the case (i,j)=(12,2) with diamond symbol in Figure 12. The 
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Figure 9. Option (I): prediction results for different sensor locations, 1Hz01.14 ffs ≈=  
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Figure 10. Option (II): force amplitude prediction convergence lines, 1Hz01.14 ffs ≈=  

Table 3. Option (II): prediction results for 
different force amplitudes, 1Hz01.14 ffs ≈=

 

(i,j) 

Actual 
Force 

Amplitude 
(N) 

Predicted 
Force 

Amplitude 
(N) 

Error 
(%) 

Predicted
Force 

Location

(11,2) 0.517 0.488 -5.61 2 
(11,2) 0.791 0.702 -11.25 2 
(9,3) 0.554 0.615 11.01 3 
(9,3) 0.713 0.695 -2.52 4 
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Figure 11. Option (II): prediction results for 
different force amplitudes and locations, 

1Hz01.14 ffs ≈=  



 

prediction model is, therefore, validated for different force amplitudes and locations. 
 
It is also interesting to study the effect of sensor location on the prediction model. Table 5 and Figure 13 show the 
predictions results. Although there are about 20-30% errors in the amplitude prediction, the location prediction is 
exactly correct. The experimental errors are considered in a reasonable range. Finally, Table 6 shows the 
prediction results for different excitation frequencies. The amplitude prediction errors are within 8% except the case 
(i,j)=(12,2) about 21%. Figure 14 shows the convergence curve for the predicted location index verse the number 
of iteration. One can see that the location prediction is exactly correct. In summary, the prediction model works 
reasonably well in actual experimental verification for different force amplitudes, locations and excitation 
frequencies as well as different sensor locations. 
 
VI. Conclusions 
 
This paper develops the unknown harmonic force prediction algorithm applied to cantilever beam structure. The 
prediction model can predict the harmonic force amplitude and its location simultaneously. Both theoretical and 
experimental force prediction results are presented to validate the prediction model. Some conclusions are made 
as follows: 
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Figure 12. Option (II): prediction results for 
different force locations, 1Hz01.14 ffs ≈=  
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Figure 13. Option (II): prediction results for 
different sensor locations, 1Hz01.14 ffs ≈=  
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Figure 14. Option (II): prediction results for 

different excitation frequencies  

 
Table 4. Option (II): prediction results for different 

force locations, 1Hz01.14 ffs ≈=  
 

(i,j) 

Actual 
Force 

Amplitude 
(N) 

Predicted 
Force 

Amplitude 
(N) 

Error 
(%) 

Predicted
Force 

Location

(12,2) 4.5 3.998 -11.16 2 
(12,3) 0.696 0.718 3.16 3 
(12,4) 0.495 0.518 4.65 4 
(12,5) 0.0772 0.088 13.99 5 

 
 

Table 5. Option (II): prediction results for different 
sensor locations, 1Hz01.14 ffs ≈=  

 

(i,j) 

Actual 
Force 

Amplitude 
(N) 

Predicted 
Force 

Amplitude 
(N) 

Error 
(%) 

Predicted
Force 

Location

(15,3) 0.556 0.398 -28.42 3 
(12,3) 0.772 0.9476 22.75 3 
(8,3) 0.682 0.915 34.16 3 
(5,3) 0.59 0.715 21.19 3 

 
Table 6. Option (II): prediction results for different 

excitation frequencies 
 

(i,j) 
Excitation 
Frequency 

(Hz) 

Actual 
Force 

Amplitude 
(N) 

Predicted 
Force 

Amplitude 
(N) 

Error
(%) 

Predicted
Force 

Location

(5,3) 14.01 0.681 0.7115 4.48 3 
(8,2) 52 0.117 0.1215 3.85 2 
(12,2) 90.73 0.402 0.488 21.39 2 
(15,3) 253.45 0.385 0.415 7.79 3 

 



 

1. The prediction model is well validated through the numerical simulation and successfully predicts the harmonic 
force amplitude and its location. 

2. In actual experimental prediction, the force amplitude can be reasonably predicted as well as the force 
location. 

3. The effects of different force amplitudes, locations and excitation frequencies on the prediction model are also 
studied. With the proper selection of sensor location the prediction model can work reasonably well. 

4. The developed harmonic force prediction methodology can also be extended to other engineering structures 
as well as employing different sensors. 
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