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ABSTRACT

This work adopts strain energy method as the damage
detection index and combines the Lagrange-Interpolation
method (LIM) as well as differential quadrature method
(DQM) to develop the damage detection algorithm for
2-D structures. By performing either theoretical or
experimental modal analysis on the structure, one can
obtain the damaged and non-damaged structural mode
shapes, that are the input to the prediction program.
Therefore, the damage location can be detected. This
work uses ANSYS software to construct both the
damaged and non-damaged plate models and determine
their mode shapes. The LIM is introduced to expand the
measurement points and the DQM is applied to
determine the derivatives of mode shapes, and so forth
the damage index over the plate structure can also be
expanded and beneficial to identify the damage location.
Results show that the effectiveness of damage detection
can be improved, especially for those experimental data
limited. The employment of LIM can increase the
accuracy of damage detection. The methodology can be
applied to 1-D structures or even general 2-D structures.
Keywords: Lagrange-Interpolation Method (LIM).
Differential Quadrature Method (DQM). Strain Energy
Method (SEM).

1. INTRODUCTION

For a structure with damage, from the point of view
of vibration the physical characteristics, such as natural
frequencies, mode shapes and modal damping can be
deviated from the normal or non-damaged structure.
From the change of such physical insight, a
non-destructive detection method can be developed to
identify the damage, or even to predict the location and
level of damage.

Chondros et al.[1] developed a theoretical model for
the continuous defected beam and predicted the location
of damages either on one side or both sides of simply
supported beam. Their theory comes from Christides and
Barrys. Xia and Hao[2] utilized the natural frequency
data and calculated the probability density function of the
input random signal as well as structural mass and
stiffness matrices. From the change of the parameters
before and after damaged, the damage location can be
predicted. Cornwell et al.[3]used the derivatives of mode
shape data to determine the strain energy for both 1-D
beam and 2-D plate structures and can accurately predict
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the damage location. Shi et al.[4] also used strain energy
method(SEM) as the damage index to successfully
predict the energy change before and after damaged.
They indicated that the index is related to system mass
and stiffness matrices as well as structural mode shape
and natural frequencies.

Teo et al.[5] applied differential quadrature method
(DQM) to analyze be buckling of rectangular plate.
DQM can be used to obtain any order of derivative or
partial derivative of a function with the predefined
variables and their corresponding function values. Tsao[6]
applied the advantage of DQM in conjunction with SEM
to damage detection for a 2-D plate. Although the
detection is feasible, in practice the acquisition data
points along the structure surface can be limited and
resulted in inaccurate prediction.

This work adopts the structural mode shapes before
and after damaged to predict the damage and its location
for 2-D plate structure. ANSYS software is used to
construct both normal and damaged plates. The line
crack damage is simulated. The original mode shape data
can be expanded with more data points by LIM, and the
derivatives of mode shapes can then be calculated by
DQM and used to obtain strain energy. Therefore, the
damage index base on SEM can be determined and
visualized to predict the damage location.

2. DAMAGE PREDICTION METHOD

This work develops a damage detection method.
Figure 1 shows the flow chart for the procedures. First,
ANSYS software is used to construct both normal and
damaged plate models and obtain structural mode shapes
before and after damaged. Only limited number of grid
elements is used to simulate the practical experiments.
Second, an expanded set of data points base on the
original structural mode shapes is numerically generated
by LIM. Third, the partial derivations of mode shapes
that can be obtained by DQM are used to catenulate the
strain energy. Finally, the damage index base on SEM
can be determined and visualized to show the damage
prediction results.

2.1 Lagrange-Interpolation method (L1M)

As mentioned, there are limited measurement points in
performing practical modal testing on a structure. This
work adopts LIM to numerically generate an expanded
set of data points that are structural mode shapes in this

paper.
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Figure 1. The flow chart for the prediction procedures

Considering the grid coordinates in a 2-D plate is

(X, Y;) where i=12,.,N, and j=12...N,. The
corresponding mode shape at (x;,y, ) is denoted as:

ZlJ = Z(Xi’yj) (1)
If the expanded set of data points is (x,,y,) where
r=12..,N, and s=12,..,N,, then the new mode
shape values determined by LIM are :

Z,, = 2(X,.Y,) ZZ%J@QFWQ )

i=1 j=1

where
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k=1,k=r (3)
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2.2 Differential Quadrature Method (DQM)
DQMI5] is an efficient and accurate numerical
method and frequently used to solve for non-linear PDEs.
The main future of DQM is that the partial derivatives of
a function can numerically evaluated by multiplication of
a weighting function. The calculation of the function
derivatives is nothing more than the linear algebra.
If the function z(x,y;) where i=12,.,

i=12,,N,
z2(x;,y;) at (x;,y;) can be expressed :

I:i (Xr) =

(4)

N, and

are known, the partial derivatives of
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2" (%, y,) = ZC“‘)f(xr,yj):n=1,2,...,NX—1 ®)

z§m)(xi,yj)=Zé(,-;n)f(xi,ys):m=l,2,...,Ny—l (6)
s=1
(n+m)(xl!y) ZC(H)ZCJS f(xr'ys

i=12..N,, and j=12..,N, 7
where z{”(x,,y,) denotes the n" partial derivatives
of z(x,y) with respect to x at (x;,y,);z{"(x,y;)
denotes the m"
respect to y at (x,,y;);z5 ™ (x,y;) denotes the

partial derivatives of z(x,y) with

n™ and m™ partial derivatives of z(x,y) with respect

to x and y partial, respectively, at (x,y,); clm

and E(j;")are the weighting coefficients for the n™ and
m" partial derivatives of z(x,y) with respect to x

and vy, respectively, and expressed as follows:

cy = (cc o ]
X; — X,
i,r=12,..,N,r=i
n=23,...,N -1 ®)
—(n-D
—(m) —my=@m Cjs
Cis =mCj Cijs -—=F
Yi _ys
1;8=12,.,N s# ]
m=23,..,N,-1 ©)
where
Ci(in) - _ C(n)
JZI’:#
i=12,...,N
n=12,.,N, -1 (10)
N
(m) L —(m)
Ci =- ZCJS
s=1,5#]
1=12,.,N,
m=12..,N,-1 (11)
and
o__ MYx)
" (Xi _Xr)M @ (Xr)
i,r=212,.,N,,r=i (12)
IS
(yj _ys)
j,5=12,.,N,,j#s (13)
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where
M (l)(xi) = l_x[(xi - Xr) (14)
POy =TT, -.) (1)
s=1,5#]

2.3 Strain Energy Method (SEM)
The strain energy for a plate structure can be shown as
follows [4]:

16
,,”[ . )}xdy (16)
where
__E® (17)
12(1-v?)

in which D is the rigidity of the plate; L and L, are

the length and width of the plate; t is the plate
thickness; E and v are Young’s Modulus and
Poisson’s ratio of the plate; w=w(x,y)is the lateral

displacement of the plate, for the k™ mode shape of the
plate ¢, (x, y) the strain energy can be written:

o.-201¢
If there are Nx and Ny

and Y directions, for the assumptions of uniform plate

and equal grid space, the strain energy in the small block
can be simplified as follows:

(18)

a‘”* 6¢k)+2(1 )(a‘”“) ixcy

equal grid pomts in both X

- - (19)
Uy = {(‘ P s Ch ""“)+2( ey "‘“)+2(1 e “’*)
where
3
D, = Eitz (20)
Tl2a-0h) |,

the strain energy for the k™ mode is :

U, = ZZU 1)

j=1 il
The non-dimensional strain energy can be defined:
Foo i (22)
1] U )

Corresponding to Equations (18) and (19), the damaged
plate equations can be obtained for U, and U
i 10 be substituted by ¢ijk.

super script * denotes the damaged plate, the
non-dimensional strain energy for the damaged plate is
shown:

uk !
respectively, only ¢

Fro=—x (23)
k

Since the crack damage is small, the total strain energy
before and after damaged remain constant, i.e.,

Ny N, Ny N, .
ZZFijk =ZZFijk =1 (24)

=1 i-1 =1 i=1

c|lC
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and

U, =U, (25)
Also, for a small region where is no damage, i.e., the
strain energy is equal,

Fijk = Fij*k (26)

Redefine Equation (19)
1

Uiy = 2 D; x fijk (27)

similarly,
B

Uijk = 2 Dij x fijk (28)
From Equations (23),(24),(27)

Uik _ Y (29)

U, U,
and from Equation(26)

Dy x f = D x fIJk (30)
One can obtain:

Dy _ Ty 31)

Dij fijk
where

ik o? ik a° Jk 8° Jk ik
H{””w( R T >}dxdy

H[[ Py (O 'k>+2<‘ 4’“)( ”ma G ﬁdxdy

A2 2 2 (32)
[(T—"’E“)H( “"“)+2< by ey 200 ¢"“)Z}
- x 24 2 oxdy =12.3..N, =123, N,
Gl Plys Ty o Ty Oy Ty
g;{( e R s ROl r.,'y)}

To account the effect of all modes, the damage index is
defined:

i
= 33)
z fijk
k=1
To normalize 3, , the damage index is redefined:

ﬁlj ﬂlj (34)

Cijp
where, /?ij is the average of g,

M=

7 =

1

and Tip is the
standard deviation of By as follows:

7 ;Zﬂ” (35)
hi= N, xN,
(Nx x Ny)[zzxﬂuzJ_[zzxﬂuJ
O'ij p _ j=1 i=1 j=1 i=1 (36)
| (N xN,)(N, xN, -1)

It is noted that Z;
and can be visualized to predict the damage location.

is the damage index base on the SEM
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2.4 Sampling Point in DQM
In DQM, in order to obtain more accurate calculation
of derivatives, the sampling points(x;, y,) are important.

The grid points proposed by Shu and Xue[7] are as
follows:

X, =i(l—cos (i _1)ﬂj
2 N, -1
i=12,.,N, 37)
L _
Y, _—y[l—cos(I D”J
2 N, -1
i=12..,N, (38)

The non-equal spatial data points are implemented
in the prediction program to ensure the accurate results.

3. MODAL ANALYSIS OF THE PLATE

This section will present the finite element model to
simulate both the normal and damaged plate. Table 1
shows the plate specification. Four cases of damaged
plates are considered as shown in Figure 2. ANSYS
software is adopted to construct the plate model
described as follows:

(1) Element type: The linear quadrilateral shell element

(SHELL 63) with 4 nodes and 6DOFs is used.
(2) Mesh plan: As shown in Figure 3, there are 30 by
20 divisions in x and y directions. There are

600 elements in the models.

(3) Constraints: No displacement constructs is
prescribed for the free-free plate. There is also no
force applied for modal analysis.
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Figure 2. Four cases of damaged plates
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Figure 2. Four cases of damaged plates

Table 1. Plate specification

Material Properties 2D plate

Young’s Modulus E 207x10°N/m?

Poisson’s Ratio v 0.3
Density 7870kg/m?
Length | 0.36m
Width L 0.24m
Thickness t 0.002m
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Figure 2. Finite element model from ANSY'S software
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To simulate the line crack damage in plate, the nodal
points in lines are splitter and rearranged the
connectivity of nodes ranged accordingly. The first eight
flexible modes are considered and input to the damage b
prediction program. A ':h:*f.__;,:f- c
4. RESULTS AND DISCUSSIONS '
4.1 Effect of LIM
This paper introduces LIM to expand the mode shape o
data points due to experimental limitation. However, only @ (N, N,)=(66)
simulation data from FEA is studied.
Figure 4 shows the damage prediction results for Case
A, when (N, , Ny):(31,21), the grid points are sufficient

enough to provide a very good damage prediction.
For only a few points being measured, i.e.,
(N,, Ny):(6,6), Figure 5 shows the prediction results for

different NX and Ny . Discussions are as follows:
(1) InFigure 5@a), (N,, Ny):(6,6) and
(N,.N,)=(6,6), i.e., no LIM is applied.

Although the prediction is good, the specific
region in not clears enough.

(2) Figure 5(b) and Figure 5(c) shows the prediction
results for (N, , N, )=(12,12)

and (N_, Ny )=(18,18), respectively. One can

observe that the damage zone can be more clearly
shown.

(3) In comparison to Figure 4, the prediction results
may not be good enough. However, it should be R
noted that there are only 6 data points in both (©) (N,,N,)=(18,18)

X -direction and Y -direction. Figure 5. Prediction results for Case A,
To further show the advantage of LIM, Figure 6 (N,.N,)=(66)
shows the prediction results of Case A for

(N,, Ny):(16,11). Figure 6(a) is for no LIM applied,

while Figure 6(b) is for the adoption of LIM with
(N,, Ny)=(21,16). One can see that the prediction of

Figure 6(b) is better than Figure 6(a) and is similar to
Figure 4. This clearly indicates that the employment of
LIM to expand the data set reveals a great advantage for
few data points.

Table 2 shows the prediction results for the other
cases, when (N,, N, )=(16,11). (NX,Ny )=(16,11) is

for no LIM, and (Nx,ﬁy )= (31,21) is applied by LIM.
Some observations are summarized as follows:

(b) (N, . N, )=(21,16)
Figure 6. Prediction results for Case A
(N,.N,)=(16,11)

Figure 4. Prediction results for Case A,
(N,, Ny)=(31,21)
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(1) The adoption of LIM to expand mode shape data

points provides a better damage detection, in _ o
terms of revealing the damage zone more clearly. ey sl o [
In case of few data points being obtained in [ ““\:\

@

4.2 Experimental Validation
The experimental results from Tsao[7] are studied

experiments, the LIM can improve the deficiency Rl

of spatial resolution, and so forth provide a
specific zone of damage prediction.

here. The same plate specification is as shown in Table 1.
The damaged plate is similar to Case B except the
location at one sixth of the plate. In experimental testing,

there are only 36 measurement points, i.e., .
(N,»N,)=(6,6). Figure 7(a) is the prediction results for }\ r“:u
no LIM. One can see the false peak occurs at the corner. == ?:;M
The damage detection is failed. However, with the trial of a5z

different N, and Ny in Figure 7(b)-7(e), the damage

location can be clearly identified. For N,

and N ,
larger than 15, the perditions become failed. We may

conclude that with the reasonable expansion of data
points by LIM, the damage detection can be greatly
improved.

Table 2.Prediction results for different case
(N,, Ny)= (16,11)

Case| (N,,N,)=(16,11) (N,.N,)=(31.21)
B
- |
: -_":_‘_".l':...'
; ﬁ.‘i’“ﬁf“&::gfl;é’ i
S
Nl

(8) (N, N, )= (15,15)
Figure 7. Prediction results experimental data,
(N, N,)=(6,6)
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5. CONCLUSIONS

This paper presents to include the LIM into the
damage prediction algorithm in conjunctions with the
DQM and SEM. The efficiency of using SEM to damage
detection has been shown. In particular, the benefit of
LIM to expand mode shape data points can be validated.
An actual experimental result is also demonstrated that
with the adoption of LIM the effectiveness of damage
detention has been greatly improved. The developed
methodology can be beneficial for vibration base damage
detection method, especially for those limited
measurement data points in practical experiments.
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