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ABSTRACT 
This work adopts strain energy method as the damage 

detection index and combines the Lagrange-Interpolation 
method (LIM) as well as differential quadrature method 
(DQM) to develop the damage detection algorithm for 
2-D structures. By performing either theoretical or 
experimental modal analysis on the structure, one can 
obtain the damaged and non-damaged structural mode 
shapes, that are the input to the prediction program. 
Therefore, the damage location can be detected. This 
work uses ANSYS software to construct both the 
damaged and non-damaged plate models and determine 
their mode shapes. The LIM is introduced to expand the 
measurement points and the DQM is applied to 
determine the derivatives of mode shapes, and so forth 
the damage index over the plate structure can also be 
expanded and beneficial to identify the damage location. 
Results show that the effectiveness of damage detection 
can be improved, especially for those experimental data 
limited. The employment of LIM can increase the 
accuracy of damage detection. The methodology can be 
applied to 1-D structures or even general 2-D structures.       
Keywords: Lagrange-Interpolation Method (LIM). 
Differential Quadrature Method (DQM). Strain Energy 
Method (SEM). 

1. INTRODUCTION 
For a structure with damage, from the point of view 

of vibration the physical characteristics, such as natural 
frequencies, mode shapes and modal damping can be 
deviated from the normal or non-damaged structure. 
From the change of such physical insight, a 
non-destructive detection method can be developed to 
identify the damage, or even to predict the location and 
level of damage. 

Chondros et al.[1] developed a theoretical model for 
the continuous defected beam and predicted the location 
of damages either on one side or both sides of simply 
supported beam. Their theory comes from Christides and 
Barrys. Xia and Hao[2] utilized the natural frequency 
data and calculated the probability density function of the 
input random signal as well as structural mass and 
stiffness matrices. From the change of the parameters 
before and after damaged, the damage location can be 
predicted. Cornwell et al.[3]used the derivatives of mode 
shape data to determine the strain energy for both 1-D 
beam and 2-D plate structures and can accurately predict 

the damage location. Shi et al.[4] also used strain energy 
method(SEM) as the damage index to successfully 
predict the energy change before and after damaged. 
They indicated that the index is related to system mass 
and stiffness matrices as well as structural mode shape 
and natural frequencies. 

Teo et al.[5] applied differential quadrature method 
(DQM) to analyze be buckling of rectangular plate. 
DQM can be used to obtain any order of derivative or 
partial derivative of a function with the predefined 
variables and their corresponding function values. Tsao[6] 
applied the advantage of DQM in conjunction with SEM 
to damage detection for a 2-D plate. Although the 
detection is feasible, in practice the acquisition data 
points along the structure surface can be limited and 
resulted in inaccurate prediction. 

This work adopts the structural mode shapes before 
and after damaged to predict the damage and its location 
for 2-D plate structure. ANSYS software is used to 
construct both normal and damaged plates. The line 
crack damage is simulated. The original mode shape data 
can be expanded with more data points by LIM, and the 
derivatives of mode shapes can then be calculated by 
DQM and used to obtain strain energy. Therefore, the 
damage index base on SEM can be determined and 
visualized to predict the damage location.   
 
2. DAMAGE PREDICTION METHOD 

This work develops a damage detection method. 
Figure 1 shows the flow chart for the procedures. First, 
ANSYS software is used to construct both normal and 
damaged plate models and obtain structural mode shapes 
before and after damaged. Only limited number of grid 
elements is used to simulate the practical experiments. 
Second, an expanded set of data points base on the 
original structural mode shapes is numerically generated 
by LIM. Third, the partial derivations of mode shapes 
that can be obtained by DQM are used to catenulate the 
strain energy. Finally, the damage index base on SEM 
can be determined and visualized to show the damage 
prediction results. 
 
2.1 Lagrange-Interpolation method (LIM) 
 As mentioned, there are limited measurement points in 
performing practical modal testing on a structure. This 
work adopts LIM to numerically generate an expanded 
set of data points that are structural mode shapes in this 
paper.  
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Figure 1. The flow chart for the prediction procedures 
 

Considering the grid coordinates in a 2-D plate is 
),( ji yx  where xNi ,...,2,1=  and yNj ,...,2,1= . The 

corresponding mode shape at ),( ji yx is denoted as: 
 ),( jiji yxzz =  (1)   

If the expanded set of data points is ),( sr yx  where 

xNr ,...,2,1=  and yNs ,...,2,1= , then the new mode 

shape values determined by LIM are： 
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2.2 Differential Quadrature Method (DQM) 
DQM[5] is an efficient and accurate numerical 

method and frequently used to solve for non-linear PDEs. 
The main future of DQM is that the partial derivatives of 
a function can numerically evaluated by multiplication of 
a weighting function. The calculation of the function 
derivatives is nothing more than the linear algebra. 

If the function ),( ji yxz  where xNi ,...,2,1= and 

yNj ,..,2,1=  are known, the partial derivatives of 

),( ji yxz  at ),( ji yx  can be expressed： 
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2.3 Strain Energy Method (SEM) 
  The strain energy for a plate structure can be shown as 
follows [4]: 
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in which D  is the rigidity of the plate; xL  and yL  are 
the length and width of the plate; t  is the plate 
thickness; E  and ν  are Young’s Modulus and 
Poisson’s ratio of the plate; ),( yxww = is the lateral 
displacement of the plate, for the thk  mode shape of the 
plate ),( yxkφ , the strain energy can be written: 
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If there are xN  and yN  equal grid points in both x  
and y  directions, for the assumptions of uniform plate 
and equal grid space, the strain energy in the small block 
can be simplified as follows: 

yx NjNi

ijkijkijkijkijkij
ijk yxyxyx

D
U

,...,2,1;,...2,1

2
2

2

2

2

2

2

2
2

2

2

))(1(2))((2)()(
2

==⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂∂
∂

−+
∂
∂

∂
∂

+
∂
∂

+
∂
∂

=
φ

ν
φφ

ν
φφ

 (19) 

where  

ij
ji

EtD ⎥
⎦

⎤
⎢
⎣

⎡
−

=
)1(12 2

3

υ
 (20) 

 
the strain energy for the thk mode is： 
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The non-dimensional strain energy can be defined: 
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Corresponding to Equations (18) and (19), the damaged 
plate equations can be obtained for *

kU  and *
ijkU , 

respectively, only ijkφ  to be substituted by *
ijkφ . The 

super script * denotes the damaged plate, the 
non-dimensional strain energy for the damaged plate is 
shown: 
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Since the crack damage is small, the total strain energy 
before and after damaged remain constant, i.e., 
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Also, for a small region where is no damage, i.e., the 
strain energy is equal, 

*
ijkijk FF =  (26) 

Redefine Equation (19) 
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To account the effect of all modes, the damage index is 
defined: 
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To normalize ijβ , the damage index is redefined: 
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It is noted that ijZ  is the damage index base on the SEM 
and can be visualized to predict the damage location. 
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2.4 Sampling Point in DQM 
  In DQM, in order to obtain more accurate calculation 
of derivatives, the sampling points ),( ji yx are important. 
The grid points proposed by Shu and Xue[7] are as 
follows: 
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The non-equal spatial data points are implemented 

in the prediction program to ensure the accurate results. 
 

3. MODAL ANALYSIS OF THE PLATE 
  This section will present the finite element model to 
simulate both the normal and damaged plate. Table 1 
shows the plate specification. Four cases of damaged 
plates are considered as shown in Figure 2. ANSYS 
software is adopted to construct the plate model 
described as follows: 
(1) Element type: The linear quadrilateral shell element 

(SHELL 63) with 4 nodes and 6DOFs is used. 
(2) Mesh plan: As shown in Figure 3, there are 30 by 

20 divisions in x  and y  directions. There are 
600 elements in the models. 

(3) Constraints: No displacement constructs is 
prescribed for the free-free plate. There is also no 
force applied for modal analysis. 
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Figure 2. Four cases of damaged plates 
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Figure 2. Four cases of damaged plates 
 

 
Table 1. Plate specification 

Material Properties 2D plate 
Young’s Modulus E  910207× N/m 2

Poisson’s Ratio ν  0.3 
Density ρ  7870kg/m 3  
Length 

xL  0.36m 
Width yL  0.24m 

Thickness t  0.002m 
 
 

 
 
Figure 2. Finite element model from ANSYS software 
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 To simulate the line crack damage in plate, the nodal 
points in lines are splitter and rearranged the 
connectivity of nodes ranged accordingly. The first eight 
flexible modes are considered and input to the damage 
prediction program. 
  

4. RESULTS AND DISCUSSIONS 
4.1 Effect of LIM 

This paper introduces LIM to expand the mode shape 
data points due to experimental limitation. However, only 
simulation data from FEA is studied. 

Figure 4 shows the damage prediction results for Case 
A, when ( xN , yN )=(31,21), the grid points are sufficient 
enough to provide a very good damage prediction. 

For only a few points being measured, i.e., 
( xN , yN )=(6,6), Figure 5 shows the prediction results for 

different xN and yN . Discussions are as follows: 

(1) In Figure 5(a), ( xN , yN )=(6,6) and 

( xN , yN )=(6,6), i.e., no LIM is applied. 
Although the prediction is good, the specific 
region in not clears enough. 

(2) Figure 5(b) and Figure 5(c) shows the prediction 
results for ( xN , yN )=(12,12)  

and ( xN , yN )=(18,18), respectively. One can 
observe that the damage zone can be more clearly 
shown. 

(3) In comparison to Figure 4, the prediction results 
may not be good enough. However, it should be 
noted that there are only 6 data points in both 
x -direction and y -direction. 

To further show the advantage of LIM, Figure 6 
shows the prediction results of Case A for 
( xN , yN )=(16,11). Figure 6(a) is for no LIM applied, 
while Figure 6(b) is for the adoption of LIM with 
( xN , yN )=(21,16). One can see that the prediction of 
Figure 6(b) is better than Figure 6(a) and is similar to 
Figure 4. This clearly indicates that the employment of 
LIM to expand the data set reveals a great advantage for 
few data points.  

Table 2 shows the prediction results for the other 
cases, when  ( xN , yN )=(16,11). ( xN , yN )=(16,11) is 

for no LIM, and ( xN , yN )= (31,21) is applied by LIM. 
Some observations are summarized as follows: 

 

 
Figure 4. Prediction results for Case A, 

( xN , yN )=(31,21) 

 

 
(a) ( xN , yN )=(6,6) 

 

 
(b) ( xN , yN )=(12,12) 

 

 
(c) ( xN , yN )=(18,18) 

Figure 5. Prediction results for Case A,  
( xN , yN )=(6,6) 

 

 
(a) ( xN , yN )=(16,11) 

 
(b) ( xN , yN )=(21,16) 

Figure 6. Prediction results for Case A 
( xN , yN )=(16,11) 
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(1) The adoption of LIM to expand mode shape data 

points provides a better damage detection, in 
terms of revealing the damage zone more clearly.  

(2) In case of few data points being obtained in 
experiments, the LIM can improve the deficiency 
of spatial resolution, and so forth provide a 
specific zone of damage prediction. 

 
4.2 Experimental Validation 
   The experimental results from Tsao[7] are studied 
here. The same plate specification is as shown in Table 1. 
The damaged plate is similar to Case B except the 
location at one sixth of the plate. In experimental testing, 
there are only 36 measurement points, i.e., 
( xN , yN )=(6,6). Figure 7(a) is the prediction results for 
no LIM. One can see the false peak occurs at the corner. 
The damage detection is failed. However, with the trial of 
different xN and yN  in Figure 7(b)-7(e), the damage 

location can be clearly identified. For xN  and yN  
larger than 15, the perditions become failed. We may 
conclude that with the reasonable expansion of data 
points by LIM, the damage detection can be greatly 
improved. 
 

Table 2.Prediction results for different case 
( xN , yN )= (16,11) 

Case ( xN , yN )= (16,11) ( xN , yN )= (31,21) 

 
 
 

B 

 
 
 

C 

 
 
 

D 

 
 
 
 

 
(a) ( xN , yN )= (6,6) 

 

 
(b) ( xN , yN )= (9,9) 

 

 
(c) ( xN , yN )= (11,11) 

 

 
(d) ( xN , yN )= (12,12) 

 

 
(e) ( xN , yN )= (15,15) 

Figure 7. Prediction results experimental data, 
( xN , yN )=(6,6) 
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5. CONCLUSIONS   
This paper presents to include the LIM into the 

damage prediction algorithm in conjunctions with the 
DQM and SEM. The efficiency of using SEM to damage 
detection has been shown. In particular, the benefit of 
LIM to expand mode shape data points can be validated. 
An actual experimental result is also demonstrated that 
with the adoption of LIM the effectiveness of damage 
detention has been greatly improved. The developed 
methodology can be beneficial for vibration base damage 
detection method, especially for those limited 
measurement data points in practical experiments.    
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摘要 

本文主要利用應變能法(Strain Energy Method)為
破壞檢測指標，結合 Lagrange-Interpolation 法(LIM)
與微分值積法(Differential Quadrature Method, DQM)
建立二維平板結構破壞預測程式。在進行理論與實驗

的模態分析後，可獲得結構破壞或非破壞時的模態振

型，並將此模態振型的資訊由程式運算，進而預測破

壞發生的位置。本文利用有限元素軟體 ANSYS 建構
破壞與非破壞的二維平板模型，可得到模態振型的資

訊，經由 LIM擴充其量測的點數，並由 DQM求得振
型的微分結果，可以有效的鑑定破壞的位置。結果顯

示出此預測流程的方法可以有效的改進預測破壞檢測

的指標，特別對量測點數不足之實驗數據，可明顯改

善預測結果，因此利用 LIM可以增加結構破壞檢測的
正確性，未來此也方法可以應用在一維的結構或者是

一般化二維平面結構的破壞預測。 
 

關鍵字：Lagrange-Interpolation法，微分值積法，應

變能法 
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