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Abstract. This paper presents a nondestructive detection of matrix cracking in composite laminates 

using experimental modal analysis and strain energy method. Carbon/epoxy composite AS4/PEEK 

was used to fabricate laminate [02/90n/02]. Matrix cracking in 90-degree lamina was created by 

subjecting to tensile test. Experimental modal analysis (EMA) was performed to obtain the mode 

shapes of the specimen before and after damage. The measured mode shapes were then used to 

compute the strain energy using differential quadrature method (DQM). A damage index was 

defined using the change of strain energy of the specimen before and after damage. Consequently, 

the damage index successfully located the matrix cracking in the specimen. A pre-study was 

performed to access this approach by using a 3-D finite element analysis (FEA).  
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Introduction 

Matrix cracking is a long term durability concern of composite structure designers. To 

nondestructively detect the damage in composite materials, vibration-based methods have been 

increasingly adopted due to their flexibility in measurement and relatively low cost. The basic idea 

of these methods is to use the information of modal parameters, such as frequency, mode shape and 

damping ratio, to access the structural damage. 

Cawley and Adams [1] simply used the frequency shifts for different modes to detect the 

damage in composite structures. Tracy and Pardoen [2] found that the natural frequencies of a 

composite beam were affected by the size and damage location. Shen and Grady [3] indicated that 

local delamination does not have a noticeable effect on global mode shape of composite beams, but 
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delamination does cause the irregularity of mode shapes. Zou et al. [4] provided a thorough review 

in vibration-based techniques and indicated that the above methods were unable to detect very small 

damage and required large data storage capacity for comparisons. Cornwell et al. [5] utilized the 

measured mode shapes to calculate the strain energy of a plate-like structure. Fractional strain 

energy was then used to define a damage index which can locate the damage in structure. The 

method only requires the mode shapes of the structure before and after damage. Nevertheless, the 

challenge of the method lies in the accuracy of measured modes. A large amount of data points are 

required for further analysis to locate the damage. To solve this problem, Hu et al. [6] adopted the 

DQM to rapidly obtain the accurate solution of strain energy and successfully located damage in a 

composite laminate plate. It was reported that the original DQM was first used in structural 

mechanics problems by Bert et al. [7]. This method is able to rapidly compute accurate solutions of 

partial differential equations by using only a few grid points in the respective solution domains [8]. 

The objective of this paper is to investigate the damage detection of matrix cracking in 

composite laminates using experimental modal analysis and strain energy method. Experimental 

modal analysis was performed to obtain the mode shapes of laminate before and after damaged. The 

mode shape displacements were then used to calculate the strain energy which was used to define a 

damage index for locating the damage of matrix cracking. 

Strain energy method and damage index 

A plate-like beam as shown in Figure 1 is subdivided into Nx×Ny sub-region and denoted the 

location of each point by (xi,yj). For laminate plate theory, the strain energy of beam during elastic 

deformation is given by 
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where w is the transverse displacement of the laminate, Dij are the bending stiffnesses of the 

laminate.  
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Figure 1 A schematic illustrating of beam 

Considering a free-free vibration problem, for a particular normal mode, the total strain energy 

of the beam associated with the mode shape kφ  can be expressed as 
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Cornwell et al. [5] suggested that if the damage is located at a single sub-region then the change 

of strain energy in sub-region may become significant. Thus, the energy associated with sub-region 

(i,j) for the kth mode is given by 
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Similarly, and  represent the total strain energy and sub-regional strain energy of the 
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Considering all modes, m, in the calculation, damage index in sub-region (i,j) is defined as 
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Equation (5) is used to predict the damage location in composite laminate beam in this study. Since 

the partial differential terms in strain energy formula are difficult to be calculated, an alternative 



 

numerical method, differential quadrature method (DQM) was introduced to solve the problem. 

Differential quadrature method 

The basic idea of the DQM is to approximate the partial derivatives of a function f(xi,yj) with 

respect to a spatial variable at any discrete point as the weighted linear sum of the function values at 

all the discrete points chosen in the solution domain of spatial variable. This can be expressed 

mathematically as 
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where i = 1,2,…,Nx and j =1,2,…,Ny are the grid points in the solution domain having Nx × Ny 

discrete number of points. )  and (n
irC )(m

jsC are the weighting coefficients associated with the nth order 

and the mth order partial derivatives of with respect to x and y at the discrete point (x),( ji yxf i, yj) 

and n=1, 2,…,Nx-1, m=1, 2,…,Ny-1. The weighting coefficients can be obtained using the 

following recurrence formulae 
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where i,r=1,2,…Nx but r≠i ; n= 2,3,…,Nx-1; also j,s = 1,2,…,Ny but s≠j; m= 2,3, …,Ny-1. The 

weighting coefficients when r=i and s=j are given as 
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where and . The above equations are applied to calculate the 

strain energy once the k
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Finite element analysis 

A pre-study was performed by establishing finite element model for composite laminate, 

[02/9012/02], with dimension 222×24.7×2.3mm3. ANSYS, a FEA commercial code, was used in this 

study. Eight-node linear solid element (SOLID46) was used in the modeling. The element provides 

a layered version allow up to 250 different material layers. A convergence study was performed to 

obtain a 23×2×16 mesh model, which is sufficient to solve the normal mode problem. A 

breadth-wide matrix crack with 0.1 mm wide was created throughout the 90-degree laminate by 

separating the nodes at the elements along the crack. 

Mechanical properties (E1 = 140.3 GPa, E2 = E3 = 9.4 GPa, G12 = G13 = 5.4 GPa, ν12 = ν13 = 

0.253) for composite beam were entered into ANSYS. These data were obtained from the 

quasi-static tensile tests of the composite material, AS4/PEEK. Hu et al. [6] found that the effects of 

out-of-plane shear modulus G23 and Poisson’s ratio ν23 on the natural frequencies are not critical in 

thin plate. Thus, the values of G23 and ν23 were assumed to be the same as G12 and ν12 in this study. 

Material density was directly measured from the specimen, i.e., ρ=1583kg/m3. A normal mode 

analysis with completely free boundary condition was performed to obtain the natural frequencies 

and the associated mode shapes up to 5 kHz. Hu et al. [6] found that mass effect of accelerometer to 

the natural frequencies of specimen is significant. Thus, a mass element (MASS21) with 0.0015 kg 

was assigned to fix at the FE model. 



 

Experimental modal analysis 

Carbon/epoxy composite prepreg AS4/PEEK was used to stack up a laminate, [02/9012/02] and 

then cured at a hot-press machine. After curing, the panel was cut to a specimen with dimension 

222×24.7×2.3 mm3 and marked with 24×3 parallel grid points. The test specimen was vertically 

hung by two cotton strings to simulate a completely free boundary condition as shown in Figure 2. 

Specimen was excited by an impact hammer with a force transducer throughout all grid points. 

Dynamic responses were measured by an accelerometer fixed at the corner. Siglab, Model 20-40, 

was used to record the frequency response functions (FRFs) between measured acceleration and 

impact force. ME’Scope, a software for general purpose curve fitting, was used to extract modal 

parameters, i.e., natural frequencies, damping ratios and mode shapes, from the FRFs. 

Modal testing was conducted on test specimen before damage. After test, specimen was 

subjected to tensile test to create matrix crack in 90-degree but not in 0-degree laminate. To achieve 

this, a tiny pre-crack was created at both sides of the grip point 13. Loading was stopped once the 

loading curve suddenly dropped accompanied a harsh noise. The location of matrix crack can be 

detected using a X-ray machine, Eresco 200MF, with output voltage 30 KV and exposure time 30 

sec. 

 

 

 

 

 

 
Impact Hammer (moving)

Composite laminatePC 

Accelerometer (fixed)  

SigLab Impact Hammer (moving)

Composite laminatePC 

Accelerometer (fixed)  

SigLab

Figure 2 Experimental Set-up 

 



 

Results 

 A pre-study of finite element analysis was performed to evaluate this approach. The first five 

mode shapes obtained from normal mode analysis were used to compute the strain energy and 

damage index of the laminate specimen. Figure 3 show the damage index of laminate for putting a 

breadth-wide matrix crack at 90-degree laminate near grid point 13. The peak values clearly locate 

the matrix crack. Similarly, Figures 4 and 5 show the predicting results of two and three matrix 

cracks in the specimens, respectively. These encouraging outcomes lead to the following 

experimental results. 

 

Figure 3 Damage index of laminate for a crack at grid point 13 (FEA) 

 

Figure 4 Damage index of laminate for cracks at grid points 6 and 15 (FEA) 

 

Figure 5 Damage index of laminate for cracks at grid points 7, 14 and 18 (FEA) 



 

In EMA results, the first five natural frequencies of the laminate specimen are listed in Table 1. 

The test results indicate that matrix cracking significantly decreases the natural frequencies of the 

test specimen except for mode (4,1). To predict the location of matrix crack, the first five mode 

shapes were used to compute the strain energy and damage index for the specimen. Figure 6 shows 

the damage index using EMA results. The peak values clearly locate the matrix crack; however, 

many peak values also emerged at some other undamaged areas. The deviation in measurement may 

attribute to these pseudomorphs. Cornwell et al. [5] suggested that damage indices with values 

greater than two are associated with potential damage locations. Thus, we tried to truncate the peaks 

of damage index less than two. The improve outcome is obtained in Figure 7. The prediction of 

matrix crack location was verified by using a X-ray machine as shown in Figure 8. The picture 

shows that matrix crack is located at grip point 13 which is identical to the prediction. 

 

Table 1 Natural frequencies of the test specimen (EMA) 

 Natural Frequency (Hz) 

Mode shape Before damage After damage △(%) 

(3,1) 302 295 -2.3 

(2,2) 670 661 -1.3 

(4,1) 856 861 0.6 

(3,2) 1405 1397 -0.6 

(5,1) 1681 1659 -1.3 

 

 

Figure 6 Damage index of laminate for a crack at grid point 13 before truncation (EMA) 



 

 

Figure 7 Damage index of laminate for a crack at grid point 13 after truncation (EMA) 

 

 13

Matrix crack 

Figure 8 Matrix crack at test specimen (X-ray picture) 

Conclusions 

Damage index using modal analysis and strain energy methods was developed to detect a 

matrix crack in composite laminate specimen in this paper. This method only requires a few mode 

shapes of the laminate specimen before and after damage. In fact, the changes of mode shapes 

before and after damage are almost invisible. However, the irregularities of mode shapes due to 

matrix cracking become significant from the perspective of strain energy approach. Both FEA and 

experimental results show that matrix cracks were successfully located by using damage indices. 

Since the number of measured points was limited, DQM provides us an accurate approach to 

compute strain energy by using only a few grid points in the test specimen. This nondestructive 

method provides a reliable, cost-effective approach for damage detection in the utilization of 

composite structures. Further research interests lie in the application of this method to various 

composite laminates. 
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