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Nomenclatures 
 

bA  the cross sectional area of beam 

bb  beam width 

bC  damping coefficient of beam  

bE  Young’s Modulus of beam  
),( txF  force function acting on beam 

jF  the j-th impact force amplitude 

nf  the n-th natural frequency of beam 

sf  harmonic excitation frequency 

bI  cross sectional moment of inertia of the beam 

bL  beam length 
N  number of modes 

tN  number of time data points 

tQ  objective function 
)(tqn  modal coordinate 

bt  beam thickness 
),( txw  beam lateral displacement  

)(),( twtxw ii =  predicted displacement response of beam 
)(ˆ),(ˆ twtxw ii =  measured displacement response of beam 

W  beam displacement amplitude 
jx  the location of the j-th harmonic force in x-coordinate 

ix  the location of the i-th accelerometer sensor in x-coordinate 

ss fπω 2=  excitation frequency 

nn fπω 2=  the n-th natural frequency of beam 

bρ  beam density 

nξ  the n-th modal damping ratio of beam 
)(xnφ  the n-th displacement mode shape of beam 

)(, jnjn xφφ =  the n-th hammer mode shape function of beam at the j-th location of the hammer actuator



 
ABSTRACT 
 
This paper presents the application of Eddy current sensor (ECS) as the sensing device to force prediction 
problem for cantilever beam structure. First, both the theoretical and experimental modal analyses are performed 
to obtain modal parameters of the beam, including natural frequencies, damping ratios and mode shapes. As the 
unknown harmonic force acting on the beam, the displacement response can then be measured by ECS and 
recorded. Since the exerted harmonic force is assumed as the ideal point force in spatial coordinate, the beam 
displacement response can be predicted and expressed as functions of the amplitude and location of the unknown 
harmonic force. The optimization problem is then constructed by defining the objective function as the mean 
square errors between the predicted and measured displacement response. With the resolution of the optimization 
problem, design variables, i.e. the amplitude and location of the unknown harmonic force, can be determined, 
simultaneously. Results show that the ECS is successfully applied to predict the unknown harmonic force contents. 
In the future, ECS can also be applied to force prediction problems for other structures such as rotor system. 
 
Keywords: force prediction, harmonic force, cantilever beam, optimization 
 
I. Introduction 
 
Harmonic force prediction is an important issue in engineering applications. For example, rotating machineries are 
often operated in constant speed and result in harmonic response. The source of harmonic excitation can be 
incurred from imbalance force effect due to inhomogeneous material or assembly tolerance. The occurrence of the 
harmonic forces in rotating systems is expected but difficult to quantify their amplitudes and locations directly. Thus, 
the prediction of harmonic forces through indirect methods has drawn much attention. Verhoeven [1] developed an 
indirect method to identify hydraulic excitation force for centrifugal pumps and hydraulic turbines. The inversion of 
transfer function matrices must be obtained and can be critical to prediction accuracy. Besides, the restriction is 
that the number of response measurement locations must be the same as the number of forces to be determined. 
Karlsson [2] formulated an indirect harmonic force measurement technique. By measuring harmonic vibration of a 
linear structure, he presented an inverse process to predict the unknown complex amplitudes of harmonic forces 
with the known spatial distribution. D’Cruz et al. [3] numerically predicted the location, amplitude and phase of the 
harmonic force acting on a plate. 
 
Wang [4] categorized the force prediction models into two types: direct method and optimization method. The 
drawback of direct method is that the force location must be known in priori. The optimization method is a general 
approach to solve for the force contents. However, the difficulty in solving the optimization problem is that many 
design variables related to the force contents can be involved. This paper will modify Wang’s formulation [4] and 
reduce the number of design variables for one location index only. 
 
For the prediction of unknown forces acting on structure, the selection of sensors to monitor the system response 
is required. Different types of sensors have been adopted to develop the force prediction model, such as strain 
gauges [5,6], accelerometers [7-9], laser vibrometer [10] and piezoelectric sensors [11]. Eddy current sensor (ECS) 
has been widely used in industrial applications. In particular, proximity measurement using ECS is one of 
frequently adopted methods to detect the displacement response of the target. Sadler and Ahn [12] applied ECS to 
detect small cracks in both aluminum and titanium. Wilde and Lai [13] optimally designed an ECS to detect 
vibrations in rotating turbine blades. The finite element model containing coil, turbine blade and air was constructed 
to perform harmonic electromagnetic simulation. The optimal mounting position of a sensor was found to measure 
the movement of turbine. Yamaguchi et al. [14] developed a method for directly measuring bearing wear by ECS. 
The fixed the ECS on the bearing stand to measure decreases in metal size due to bearing wear. In this work, the 
ECS is adopted to measure the beam displacement response due to harmonic force excitation. 
 
This paper slightly modifies Wang’s method [4] and follows its formulation to develop the prediction model for 
unknown harmonic force. Section II details the beam response analysis and the development of harmonic 
prediction model. Sections III and IV describe the implementation of prediction program and the experimental work, 
respectively. Section V shows both the theoretical and experimental prediction results, respectively, and 
demonstrates the feasibility of the developed force prediction model. 
 
 

 



II. Theoretical Analysis: 
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(a) system diagram       (b) test grid points 

Figure 1. Cantilever beam system diagram 

2.1 Beam Response analysis 
 
Consider a uniform cantilever beam as shown in Figure 1(a). The system equation of motion for lateral vibration 
analysis can be written [15]: 
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If the applied force is harmonic acting at , the force function can be expressed: jxx =

( ) ( ) ti
jj

sexxFtxF ωδ −=,  (2) 
where Delta function ( )jxx −δ  represents the harmonic force location. From expansion theorem, the beam 
response can be assumed: 
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By the substitution of Equation (3) into Equation (1), the beam displacement at  can be derived: ixx =
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One can observe that beam displacement is functions of modal parameters, i.e. nω , nξ  and nφ , as well as the 
harmonic force amplitude , excitation frequency jF ss fπω 2=  and its location .It is noted that in numerical 
simulation only N modes are included to calculate the beam displacement. 
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2.2 Development of Harmonic Force Prediction Model 
 
The conceptual diagram for force prediction model is depicted in Figure 2. For a structure subjected to unknown 
force, the ECS can detect the structural response as the input to the prediction model. Once the system modal 
parameters are also known, the force contents, including force amplitude and its location can be determined. This 
work deals with the prediction of unknown harmonic force acting on the cantilever beam. The ECS is employed to 
measure the beam response as the input to the prediction model. The system modal parameters, including natural 
frequencies, damping ratios and mode shapes, that can be determined theoretically or experimentally are also 
assumed known. The force prediction model will be developed to determine the force amplitude and its location, 
simultaneously. The optimization problem to predict the unknown harmonic force is formulated as follows: 
Objective function:  
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Design variables:  
jFj  ,  (7) 

When , 1=j )( jn xφ  equal to Nnxn ,...,2,1),( 1 =φ , and etc. The objective function  is defined as the sum of tQ 

 



square errors between the measured displacement and the predicted displacement over the time 
range from to . As shown in Equation (4), the predicted displacement is functions of structural modal 
parameters and force contents. Structural modal parameters can be known. The unknown force contents are the 
force amplitude  and its location , while the force excitation frequency 
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design variables can then be identified as F  and . The index j related to the location  will result in j j jx

Nnx jn ,...,),( = 2,1φ . By the resolution of the optimization problem, the unknown harmonic force amplitude and its 
location index j can be determined simultaneously. The objective of the optimization problem is, therefore, to find 
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Figure 3. Force prediction program flowchart 
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Figure 2. Conceptual diagram for force prediction 
Table 1. Beam dimensions and material properties 

Material Steel 
Length  ( )bL 0.3 m 
Width  ( )bb 0.04 m 

Thickness  ( )bt 0.0016 m 
Density  ( )bρ 7870 kg/m3

Young’s Modulus ( bE )199×109 N/m2

Poisson ratio ( )bυ  0.292 

Table 2. Natural frequencies and damping ratios of 
cantilever beam  

Mode Experimental 
(Hz) 

Theoretical 
(Hz) 

Error 
(%) 

Damping ratio
(%) 

1 14.02 14.44 2.91 1.29 
2 90.14 90.49 0.39 0.29 
3 253.00 253.39 0.15 0.09 
4 497.24 496.57 -0.13 0.07 

force prediction
        model

force contents

unknown harmonic force

 

 
III. Development of Prediction Program 
 
The force prediction program is implemented with Compaq Visual FORTRAN [16]. The IMSL optimization 
subroutine DBCPOL [17], which adopts direct search complex algorithm to solve general optimization problem with 
multiple design variables, is used to solve for the design variables, i.e. the force amplitude  and its location 
index . The force prediction program flow chart is shown in Figure 3. There are two program options. Option (I) 
uses theoretically determined modal parameters and the specified harmonic force to generate the theoretical beam 
displacement response to represent the measured response  for the verification of the force prediction 
model. Option (II) deals with the experimental validation. Program will read in experimentally measured beam 
displacement  to predict the unknown applied harmonic force contents. Both theoretical and experimental 
prediction results will be presented in Section V. 
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IV. Experimental Setup 
 
Table 1 shows the beam dimensions and its material properties. Conventional modal testing is carried out to obtain 
the beam modal parameters and validated with theoretical modal analysis [18]. The test grid points on the beam 

 



are shown in Figure 1(b). The first four natural frequencies of bending modes and the corresponding damping 
ratios are listed in Table 2. The first four bending mode shapes are shown in Figure 4. As one can observe the 
modal parameters agree well between theoretical and experimental analysis. 
 
Figure 5 shows the experimental layout for harmonic force prediction. The mini shaker (BK4809) is used to 
simulate the harmonic force. The built-in signal generator of the analyzer (SigLab 20-42) can control different force 
levels and excitation frequencies. The eddy current sensor (KD2300-2S) is applied to measure the beam response 

 due to the harmonic force excitation. The harmonic force amplitude  can be monitored through the 
impedance head (PCB288D01) connected to the analyzer. The force prediction program is operated off-line to 
determine the force amplitude  and location index j with the input of  and the determined structural 
modal parameters. 
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V. Results and Discussions 
5.1 Theoretical prediction results – Option (I) 
 
This section presents the harmonic force prediction results by option (I), i.e. the theoretical approach to verify the 
feasibility of the developed force prediction model. The following conditions are studied: (1) different force locations, 
(2) different force amplitudes, (3) different excitation frequencies and (4) different sensor locations. 
 
Figures 6 and 7 show the prediction results for different force locations for on-resonance and off-resonance 
excitation, respectively. The legend (2,3) shown in Figure 6 denotes (i,j)=(2,3), i.e. the force applied at position j=3, 
and the sensor at location i=2. Figure 6(a) and (b) are the prediction historical trends for both force amplitude and 
location, when the excitation frequency is  near the first natural frequency. As one can see both 
force amplitude and location converge to the exact solution. The prediction historical trend varies largely in the 
initial stage of iteration and finally converges to exact solution. Figure 7 reveals the similar results except that the 
excitation frequency is , i.e. between the first and second resonant frequencies. From Figure 6 
and 7, one can see the prediction algorithm works very well and predicts the force amplitudes and their locations 
correctly. 

1Hz02.14 ffs ≈=

21 Hz50 fff s <=<

 
In order to further study the effect of force amplitudes on the prediction model, different force amplitudes are 
applied. Figure 8 and 9 show the prediction results for both on-resonance ( ) and off-resonance 
( f ) excitation cases, respectively. Exact predictions of force amplitudes and locations can be 
achieved.  
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Figure 10 shows the prediction results for the first ( ) and second ( ) mode 
resonant excitation cases, and Figure 11 is for off-resonance excitation =30, 50, 70 and 80 Hz. The optimal 
solutions converge to the exact value of force amplitude and location index correctly. 

1Hz02.14 ffs ≈= 2Hz14.90 ffs ≈=

sf

 
(a)Mode 1         (b) Mode 2 

 
  (c)Mode 3           (d) Mode 4 

Figure 4. mode shapes of cantilever beam 
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Figure 5. Experimental setup for harmonic force 
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Figure 6. Option (I): prediction results for different force locations,   1Hz02.14 ffs ≈=
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Figure 7. Option (I): prediction results for different force locations,   21 Hz50 fff s <=<
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(a) force amplitude     (b) force location 

Figure 8. Option (I): prediction results for different force amplitudes,   1Hz02.14 ffs ≈=
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Figure 9. Option (I): prediction results for different force amplitudes,   21 Hz50 fff s <=<
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(a) force amplitude     (b) force location 

Figure 10. Option (I): prediction results for different excitation frequencies (on-resonance excitation) 
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(a) force amplitude     (b) force location 

Figure 11. Option (I): prediction results for different excitation frequencies (off-resonance excitation) 
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Figure 12. Option (I): prediction results for different sensor locations,   1Hz02.14 ffs ≈=
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(a) force amplitude     (b) force location 

Figure 13. Option (I): prediction results for different force amplitudes,   21 Hz50 fff s <=<
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Figure 14. Option (II): force amplitude prediction convergence lines,  1Hz02.14 ffs ≈=
 
Finally, it is also interested to know whether the sensor location will affect the prediction results. Figure 12(a) and (b) 
show the prediction historical trends of force amplitude and location index, respectively, for the first mode excitation, 
while Figure 13 is for the off-resonant excitation case, . The solutions also converge very well. 21 Hz50 fff s <=<
 
In summary, according to the above discussions base on Option (I) approach the force prediction model is feasible 
and also works well for different force amplitudes, locations, excitation frequencies and sensor location. Next, the 
experimental approach by Option (II) will be discussed. 
 
5.2 Experimental prediction results – Option (II) 
 
The experimental setup is as described in Section III. The harmonic force is emulated by a shaker and applied at 
the designated location. The force amplitude can be measured for comparison. The ECS is also located as 
prescribed to measure the beam displacement due to the harmonic excitation. The recorded displacement 
response is as the input to the prediction program. For the present work, the off-line force prediction is applied. 
 
Table 3 shows the prediction results for different force locations for on-resonance excitation . The 
prediction errors of amplitudes are within 10% for two cases. For the case of (i,j)=(15,4), the error is about –22% 
due to the incorrect prediction of force location. The bad prediction for the case of (i,j)=(15,7) is due to the low force 
amplitude. The amplitude converge line is shown in Figure 14 and reveals that the optimization solver works and 
converges optimal values. The location prediction is correct except the case of (i,j)=(15,4). Figure 15 shows the 
prediction historical trends of force location.  

1Hz02.14 ffs ≈=

 
Table 4 shows prediction results for different force amplitudes for . The force locations are 
correctly predicted, while the force amplitude predictions are in a reasonable range. Figures 16 shows the 
prediction historical trends for force locations.  

1Hz02.14 ffs ≈=

 
Table 5 shows the reasonable prediction results for different excitation frequencies except for the case of 
(i,j)=(13,6). The possible cause can be the sensor location (i=13) near the nodal points of modes 2 and 3. Their 
modal response at such a location can be relatively small and result in bad prediction. Figures 17 shows the 
prediction historical trends for force locations. As one can see, the force location and amplitude converge to 
optimal values near to the correct ones except for the case of (i,j)=(13,6), =70Hz.  sf
 
Table 6 shows very good prediction of force locations for different sensor locations for , and 
Figure 18 shows the prediction historical trends. The force amplitude prediction errors are near 30% for two cases 
of (i,j)=(11,5) and (i,j)=(13,5). The cause can be the sensor located near the nodal points. From the experiments, 
we may conclude that the force prediction model can reasonably predict the harmonic force amplitude and location 
simultaneously, if the sensor is properly mounted away from nodal points of structural mode shapes. 
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VI. Conclusions 
 
This paper successfully applies the eddy current sensor to detect the beam displacement response due to 
unknown harmonic force and predicts its force amplitude and location simultaneously. The force prediction model 
are numerically simulated and experimentally verified to show the feasibility and capability for different force 
amplitudes, locations and excitation frequencies as well as different sensor locations. With the proper selection of 
sensor locations away from nodal points of mode shapes, the prediction algorithm can reasonably predict the  
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Figure 15. Option (II): prediction results for 
different force locations,  1Hz02.14 ffs ≈=

0 20 40 60 80
Number of iteration

100

0

4

8

12

16

Po
si

tio
n

14.02Hz

(3,5)

(3,5)

(15,2)

(15,2)

 
Figure 16. Option (II): prediction results for 
different force amplitudes,  1Hz02.14 ffs ≈=
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Figure 17. Option (II): prediction results for 
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Figure 18. Option (II): prediction results for 
different sensor locations,  1Hz02.14 ffs ≈=

 
harmonic force amplitudes and locations, simultane
location index and force amplitude are considered a
and efficiency to solve. The developed harmoni
engineering structures. In particular, the use of non-
prediction of imbalance force effect. 
Table 3. Option (II): prediction results for different force 
locations,  1Hz02.14 ffs ≈=

 (i,j)

Actual 
Force 

Amplitude
(N) 

Predicted 
Force 

Amplitude 
(N) 

Error 
(%) 

Predicted
Force 

Location

(15,2) 0.476 0.520 9.24 2 
(15,4) 0.274 0.213 -22.26 5 
(15, 5) 0.143 0.154 7.69 5 
(15,7) 0.0536 0.0729 36.01 7 

 
 

Table 4. Option (II): prediction results for different force 
amplitudes,  1Hz02.14 ffs ≈=

 (i,j)

Actual 
Force 

Amplitude
(N) 

Predicted 
Force 

Amplitude 
(N) 

Error 
(%) 

Predicted
Force 

Location

(3,5) 0.179 0.223 24.58 5 
(3,5) 0.290 0.305 5.17 5 
(15,2) 0.476 0.520 9.24 2 
(15,2) 0.533 0.588 10.32 2 

 
 

Table 5. Option (II): prediction results for different 
excitation frequencies  

 (i,j)
Excitation
Frequency

(Hz) 

Actual 
Force 

Amplitude
(N) 

Predicted 
Force 

Amplitude 
(N) 

Error
(%) 

Predicted
Force 

Location

(3,5) 14.02 0.290 0.305 5.17 5 
(13,6) 70 0.385 1.5 289.61 13 
(11,3) 90.14 0.262 0.196 -25.19 3 
(11,2) 253 0.11 0.130 18.18 2 

 
 

Table 6. Option (II): prediction results for different 
sensor locations,  1Hz02.14 ffs ≈=

 (i,j)

Actual 
Force 

Amplitude
(N) 

Predicted 
Force 

Amplitude 
(N) 

Error 
(%) 

Predicted
Force 

Location

(3,5) 0.290 0.305 5.17 5 
(8,5) 0.251 0.223 -11.16 5 
(11,5) 0.131 0.167 27.48 5 
(13,5) 0.153 0.200 30.72 5 

 

 

ously. The merit of the developed algorithm is that only one 
s design variables and make the optimization problem simple 

c force prediction methodology can be extended to other 
contact ECS will be applicable to rotor systems and lead to the 
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