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ABSTRACT 
 
Structural modal parameters, including natural frequencies, 
modal damping ratios and mode shapes, can be obtained 
via conventional modal testing methods. The major 
restriction is that the structure must be in static. For the 
structure subjected to a known harmonic force acting at the 
known location, the steady state response of the structure 
can also be harmonic. The operational deflection shape 
(ODS) of the structure can then be measured in its operating 
condition. The ODS is known as functions of modal 
parameters. In particular, natural frequencies and modal 
damping ratios can be easily obtained from single 
measurement of structural response. Therefore, this work 
presents the predictive algorithm to obtain the mode shapes 
from the ODS for simply supported beam subjected to 
harmonic excitation. The optimization problem to predict the 
structural mode shapes will be formulated. The objective 
function to be minimized is defined as the least square 
errors between the measured and predicted ODS. The 
corresponding mode shape components that are used to 
curve-fit the mode shapes are defined as the design 
variables. An n-th order polynomial function is adopted to fit 
the mode shape vector. With the resolution of the 
optimization problem, the structural mode shapes can then 
be determined. Numerical examples for an ideal simply 
supported beam subjected to a harmonic point force are 
shown to demonstrate the prediction of mode shapes via 
only one set of ODS available. Results show that the 
developed predicted algorithm to identify structural mode 
shapes is feasible and quite efficient in comparison to 
conventional modal testing method. The developed 
methodology can be applied to structural modal testing for 
structures in harmonic operating conditions. 
 
NOMENCLATURE 
 

bA  beam cross-sectional area 

qr
a

,
 coefficient of polynomial fitting function 

bC  beam damping coefficient 

bE  beam Young’s Modulus 

j
F  amplitude of the j-th harmonic force  

( )txF ,  excitation force function 

{ })(ωF  force vector 

)(ω
ij

H  frequency response function between the i-th 

displacement and the j-th force 
[ ])(ωH  frequency response function martix 

bI  beam cross-sectional area moment of inertia 

bL  beam length 

MAC modal assurance criterion 
m  number of measurement point of ODS and also 

the number of mode shape components 
N  order of the polynomial function 
n  number of modes to be determined 
p  number of interpolation points for polynomial fit 

rS  sum of the absolute value of mode shape 

components for r-th mode shape 

drS  sum of the absolute value of derivative of r-th 

mode shape component 
( )txw ,  beam lateral displacement 

( )
siX ω  i-th component of operational deflection shape for 

harmonic excitation 
( )

si
X ω  absolute value of operational deflection shape for 

harmonic excitation 
{ })(ωX  displacement response vector 

{ })( sX ω  operational deflection shape for harmonic 

excitation 

{ })(ˆ
s

X ω  experimental operational deflection shape for 

harmonic excitation 

sry ,
 design variable of s-th component of the r-th mode 

shape 

rξ  r-th viscous damping ratio 

bρ  beam density 

Φ  objective function 

jr ,
φ  j-th component of the r-th normalized modal vector 

( )xr
φ  r-th mode shape function 

{ }rφ  r-th normalized modal vector 

r
ω  r-th undamped natural frequency 

s
ω  excitation frequency 

 
1. INTRODUCTION 
 
In performing conventional experimental modal analysis 



(EMA) or testing, structures are generally required to be in 
static. With the use of actuators, such as shakers or impact 
hammers, to excite structure and the use of sensors, such 
as accelerometers, to measure structure response, the 
frequency response function (FRF) can then be measured. 
At least a row or a column of FRF matrix should be obtained 
so that the general curve-fitting process can be applied to 
extract structural modal parameters [1]. If the test structure 
is in its operating condition, such as a rotor system in 
rotating condition, the conventional EMA technique can not 
be applied directly. 

For the restriction of conventional modal testing, the 
structural modal identification in operational condition arises 
many interests. James et al. [2] proposed the natural 
excitation technique (NexT) to extract modal parameters 
from operating structures. Hermans and Auweraer [3] 
developed the modal identification method by using 
output-only response and discussed its use for real 
structures, such as bridges, aircrafts and vehicles. Hermans 
and Hermans [4] also introduced structural model 
identification during normal operating conditions. 

The ODS is not only useful for machinery diagnosis [5] 
or damage detection [6] but also applicable to identify 
excitation force [7]. Wang [8] had a first attempt to extract 
mode shapes from ODS for MDOF systems. Hu [9] further 
modified the prediction model by adding realistic constraints 
and had experimentally validated the modal data for MDOF 
systems. This paper will adopt the basic idea from Wang [8] 
and Hu [9] to develop the mode shape prediction model from 
ODS for beam structures.  

This work assumes the beam structure subjected to a 
known harmonic force excitation. The beam will also appear 
harmonic response. The ODS of the beam can then be 
measured and as the input data to the prediction model. The 
developed mode shape prediction model can identify the 
structural mode shapes. This work thus enhances the modal 
parameter extraction technique for structure under harmonic 
operating condition and can be extended to operational rotor 
system for extracting system mode shapes. 
 
2. THEORETICAL ANALYSIS 
 
2.1 Modal analysis 

Consider a beam neglecting shear deformation and 
rotary inertia. The equation of motion for lateral vibration can 
be expressed as follows: 
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For the simply supported beam as shown in Fig. 1, the 
boundary condition can be shown: 
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Natural frequencies of the simply supported beam can be 
obtained as follows [10]: 
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where  
πα rLbr = , nr ,...,2,1=  

The normalized mode shapes can be expressed: 
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The orthonormality relations of mode shapes can be derived 
as follows [11]: 

( ) ( )




≠
=

=∫ rs

rs
dx

dx

xd
xIE r

L
r

sbb

b

,0

,2

0
4

4 ωφ
φ  (5) 

( ) ( )∫




≠
=

=
bL

rr

rsb rs

rs
dxxxC

0 ,0

,2 ωξ
φφ  (6) 

( ) ( )∫




≠
=

=
bL

rsbb rs

rs
dxxxA

0 ,0

,1
φφρ  (7) 

2.2 Harmonic analysis 
For the beam subject to the harmonic force acting 

at
j

xx = , the force function can be written: 

( ) ( ) ti

jj
sexxFtxF ωδ −=,  (8) 

The beam response can also be harmonic and determined 
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The beam response at
ixx = can then be derived 

( ) ( ) ( ) ( )
( ) ( )∑∑

∞

=

∞

= +−
==

1
22

1 2
,

r
srrsr

irjrjti

r

ti

riri i

xxF
eeQxtxw ss

ωωξωω

φφ
φ ωω

( ) ti

si
seX ωω=  (11) 

where ( )
siX ω is the harmonic response of the beam 

at
ixx = . If there are m observation points, the ODS vector 

can be defined as follows: 
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The frequency response function (FRF) between the j-th 
harmonic force and the i-th displacement response can also 
be obtained: 
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The input and output relation can be expressed as follows: 
{ } [ ]{ })()()( ωωω FHX =  (14) 
In conventional structural modal testing, one will 

experimentally measure a column or a row of the FRF 
matrix. 
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Fig. 1 Simply supported beam model 
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Fig. 2 Idea for mode shape prediction via ODS 
 

Based on the theoretical formulation of FRF such as shown 
in Equation (14), modal parameter extraction method can 
then be applied to curve fit the FRF so that natural 
frequencies, damping ratios and mode shapes can be 
obtained. 

In this work the ODS as defined in Equation (12) are 
assumed measurable. The harmonic force information is 
also assumed known in prior. Natural frequencies and 
damping ratios can be easily obtained from single 
measurement of FRF. The i-th components of ODS vector 
can be shown as a function of the harmonic force amplitude 
and the excitation frequency as well as modal parameters. 
The following section will present the mode shapes 
prediction model from the ODS. 
 
2.3 Mode shape prediction model from ODS 

The general idea for mode shape prediction from the 
measured ODS is illustrated in Fig. 2. There are m grid 
points in beam. With the assumption that the harmonic point 
force is applied at the j-th location, and the sensor, such as 
the accelerometer, is located at position i . The ODS vector 

( ){ }
1

ˆ
×ms

X ω can be measured and as the input data to the 

prediction model. As mentioned previously, natural 
frequencies and damping ratios of the beam structure can 
be easily obtained and also be the input. Through the 
prediction model, the structural mode shapes can then be 
determined. In order to develop the mode shape prediction 
model, the polynomial fit of the mode shape function is first 
illustrated in Fig. 3(a). 
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(a) Illustration for polynomial fit of mode shape function 
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(b) Representation of mode shape by polynomial 

function 
Fig. 3 Polynomial interpolation of mode shape function 

There are p grid points along the beam length. Their 
coordinates are denoted as 

p
xxx ~,...,~,~

21
. Their 

corresponding components of the r-th mode shape are 
designated as 

prrr
yyy

,2,1,
,...,, . The polynomial fitting function 

for the r-th mode shape can be expressed as follows: 
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The coefficient 
qr

a
,

 can be determined by polynomial fit 

with the known 
sx~ , ps ,...,2,1= . If there are m measurement 

points, and their coordinates are 
mxxx ,...,, 21
, then the i-th 

component of the r-th mode shape can be interpreted as 
illustrated in Fig. 3(b). There are several advantages of the 
adoption of polynomial fitting function to represent the mode 
shape. The number of interpolation point p can be different 
from the ODS measure point m. The order of polynomial 
function N can be easily adjusted for different boundary 
characteristics. In the following derivation of the mode shape 

prediction model, the 
sry ,
, nr ,...,2,1= , ps ,...,2,1=  will 

be chosen as the design variables. The slight deviation of 
sry ,
 from the mode shape components ( )

sr x~φ  will be 

smoothed. The polynomial fitting function still will be have 
good interpolation of structural mode shapes. 

The purpose of this section is to formulate the 
optimization problem that can be solved for the mode 
shapes from ODS. As noted previously, the measured ODS 

vector is denoted ( ){ }
s

X ωˆ . The theoretical ODS vector 

( ){ }
sX ω  has been derived in section 2.2. 
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Fig. 4 Mode shape prediction program flow chart 



As shown, ( ){ }
sX ω  are functions of the harmonic force 

as well as modal parameters. In particular, the mode shape 
components are unknown and to be determined. Therefore, 
the optimization problem to predict the mode shape is 
defined as follows: 

Objection function: 
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Design variables: 
sry ,
; nr ,...,2,1= ; ps ,...,2,1=  
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The objective function uses the MAC characteristics. If 
two vectors are proportional to each other, the MAC value 
will be exactly one. The objection function is based on the 
minimization of the least square error between the predicted 
and measured ODS. As shown in Equation (16), the 
predicted ODS ( ){ }

sX ω  can be a function of the harmonic 

force and modal parameters. With the adoption of 
polynomial fit on mode shape functions as shown in 
Equation (15). The design variables can be specified as 

sry ,
. 

This approach is different from the previous work [8,9]. They 
used mode shape components as the design variables for 
MDOF systems. The polynomial fit will reduce the number of 
design variables and provide with flexibility to choose the 
interpolation points. 

Constraint I is to confine the determined mode shapes 
to maintain their orthorgonality relations. Constraint II uses 
the sum of absolute value of mode shape components for 
each mode shape to adjust the mode sequence. Constraint 
III is also applied to adjust the mode sequence by summing 
the absolute values of derivative of mode shape 
components. The higher mode results in the higher values of 

drS . 

After the resolution of the optimization problem, design 
variables 

sry ,
 can be determined. The polynomial fit of 

mode shape function as shown in Equation (15) can also be 
solved. The mode shapes can then be interpolated 
accordingly. 
 
3. NUMERICAL SIMULATION 
 
3.1 Development of prediction program 

This section introduces the mode shape prediction 
program by using MATLAB [12]. Polynomial-fit algorithm 
polyfit provided by MATLAB is adopted to curve fit the mode 
shape function with the known 

sx~  and 
sry ,
, ps ,...,2,1= . In 

solving the defined optimization problem, a general 
constrained optimization solver that is also provided by 
MATLAB is used. The solution flow chart is illustrated in Fig. 
4. The major steps of the prediction program is summarized 
as follows: 
1.define program variables: p is the number of interpolation 

points for polynomial fit. N is the order of the polynomial 
function. n is the number of modes to be determined. m is 
the number of measurement point of ODS and also the 
number of mode shape components. 

2.setup the initial guess of design variables 

sry ,
, nr ,...,2,1= ; ps ,...,2,1= . The number of design 

variables is pn × . 
3.perform polynomial fit to obtain mode shape polynomial 

function. The coefficient of polynomial 
qr

a
,

 will be 

determined. 
4.determine the mode shape components ( )

irir xφφ =,
, at 

every measurement point 
mxxx ,...,, 21
. 

5.solve the defined optimization problem by substituting the 
mode shape components obtained in the previous step. An 
optimum set of design variables 

sry ,
 can be resolved. 

6.use the optimum design variables 
sry ,

 to perform 

polynomial fit so as to determine the mode shape 
polynomial function. The mode shape at the measurement 
points can then be interpolated and predicted. 

The factors that affect the optimum solution and the 
accuracy of the predicted mode shapes are discussed as 
follows: 
1.The number of interpolation points p should be proper 

selected. p must be large enough to reveal the mode 
shape characteristics. The thumb rule is that p is at least 
twice of modes to be predicted. 

2.The order of polynomial function N should also be selected 
according to the number of modes to be determined. 

3.The proper choice of the initial guess of design variables 

sry ,
 will be beneficial to efficiently solve for the optimum. 

As discussed, this work adopts the polynomial function to 
fit mode shapes. Therefore, the discrepancy of the 
guessed initial design variables from the optimum values 
can be adjusted accordingly. The fitted polynomials also 
have the ability to smooth the mode shape curve, and so 
forth the relative deviation of 

sry ,
 can be smoothed and 

minimized. The effect of the prediction error of 
sry ,
 on 

mode shapes will also be reduced. 
 
3.2 Feasible study for simply supported beam 

This section will perform the theoretical simulation to 
extract mode shapes from ODS for a simply supported beam. 
The beam geometry and material properties are listed in 
Table 1. The first four natural frequencies are 

1f =32.2509Hz,
2f =129.0038Hz,

3f =290.2585Hz,
4f =516.0

151Hz. Their corresponding mode shapes are shown in Fig. 
5. Damping ratios are assumed to be 0.01 for all modes. 

For verification purpose, the measured ODS ( ){ }
s

X ωˆ  is 

replaced by the theoretical ODS. The mode shape prediction 
program is tested to validate its feasibility in predicting mode 
shapes from only ODS available. The program variables are 
set as p=10, N=10, n=4, and m=15. 
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Fig. 5 Theoretical mode shapes of simply supported 

beam 



Table 1. Simply supported beam geometry dimension 
and material properties 

 

Material Steel 

Length (
bL ) 0.3m 

Width (
bb ) 0.04m 

Thickness (
bt ) 0.002m 

Density (
b

ρ ) 7870kg/m3 

Young’s Modulus (
bE ) 207×109 N/m2 

 
On-resonance excitation case 

For the case of 
sf =129Hz

2f≈ , i.e. near the second 

mode, the theoretical prediction results are shown in Table 2 
and Fig. 6. The discussions are as follows: 
1.Table 2(a) shows the comparison between the measured 

(theoretical) and predicted ODS. The relative errors of 
predicted are ODS within 13%. 

2.Fig. 6(a) depicts both the measured (theoretical) and 
predicted ODS that appear very good agreement. 

3.Fig. 6(b) reveals the predicted first four mode shapes that 
agree very well with the theoretical mode shapes. 

4.Table 2(b) and 2(c) show the MAC and MSF matrices for 
theoretical and predicted mode shapes, respectively. That 
the diagonal elements of MAC matrix are very close to 1 
indicates very good similarity. That the off-diagonal 
elements close to zero means the orthonormality between 
the theoretical and predicted mode shapes. Similar 
phenomenon can be observed for the MSF matrix. In 
particular, if the MSF value equals to 1, both vectors are 
exactly the same. The diagonal terms of MSF matrix 
reveal to be 1.03~1.07. This implies that the predicted 
mode shape error is with in 7%. 
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(a) Theoretical and predicted (b) Predicted mode shapes 

ODS 
Fig. 6 Theoretical prediction of mode shapes for 

on-resonance excitation,
sf =129Hz

2f≈  

 
Table 2.Theoretical prediction of mode shapes for 

on-resonance excitation,
sf =129Hz

2f≈  

(a) Comparison between theoretical and predicted ODS 

NO. 
Measured 

(theoretical) 
410 −×X  

Predicted 
410ˆ −×X  

Error (%) 

100
ˆ

×
−

X

XX
 

1 0 0 0 
2 -0.1095-0.0075i -0.1189-0.0076i 8.4957 
3 -0.2176-0.0133i -0.1875-0.0117i -13.7959 
4 -0.3126-0.0162i -0.2720-0.0142i -13.0099 
5 -0.3717-0.0156i -0.3350-0.0140i -9.8642 
6 -0.3686-0.0119i -0.3366-0.0109i -8.6971 

7 -0.2893-0.0060i -0.2632-0.0055i -9.0324 
8 -0.1428+0.0008i -0.1282+0.0008i -10.1907 
9 0.0381+0.0071i 0.0361+0.0066i -5.1401 

10 0.2066+0.0118i 0.1876+0.0109i -9.1907 
11 0.3190+0.0142i 0.2853+0.0127i -10.5786 
12 0.3485+0.0138i 0.3058+0.0120i -12.2756 
13 0.2914+0.0109i 0.2574+0.0094i -11.6466 
14 0.1647+0.0060i 0.1692+0.0063i 2.7187 
15 0 0 0 

 
(b) MAC matrix for theoretical and predicted mode 

shapes 
theoretical 
 
predicted 

Mode 1 Mode 2 Mode 3 Mode 4 

Mode 1 0.9994 0.0000 0.0001 0.0000 
Mode 2 0.0000 0.9983 0.0000 0.0000 
Mode 3 0.0001 0.0000 0.9998 0.0000 
Mode 4 0.0000 0.0000 0.0000 0.9997 

 
(c) MSF matrix for theoretical and predicted mode 

shapes 
theoretical 
 
predicted 

Mode 1 Mode 2 Mode 3 Mode 4 

Mode 1 1.0419 -0.0002 -0.0125 -0.0001 
Mode 2 0.0002 1.0378 0.0002 0.0008 
Mode 3 0.0127 -0.0003 1.038 -0.001 
Mode 4 0.0001 -0.0015 0.0009 1.0799 

 
Off-resonance excitation case 

For the case of 
2f <

sf =215Hz<
3f , i.e. between the 

second and third modes, Table 3 and Fig. 7 show the 
prediction results. The discussions are as follows: 
1.From Table 3(a), the predicted ODS errors can be 

observed within 10%. 
2.Fig. 7(a) and 7(b) show the predicted ODS and mode 

shapes, respectively. They appear very good prediction. 
3.From Table 3(b) and 3(c), one can observe that the 

maximum error of predicted mode shapes has no more 
than 8%. 

This section demonstrates the developed mode shape 
prediction model to be applied to a simply supported beam 
structure. The mode shapes can be satisfactory predicted 
from ODS within 8% error for different excitation frequency 
cases. 
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(a) Theoretical and predicted (b) Predicted mode shapes 

 ODS 
Fig. 7 Theoretical prediction of mode shapes for 

off-resonance excitation,
2f <

sf =215Hz <
3f  

 
 



Table 3.Theoretical prediction of mode shapes for 
off-resonance excitation, 

2f  <
sf =215Hz <

3f  

(a) Comparison between theoretical and predicted ODS 

NO. 
Measured 

(theoretical) 
410 −×X  

Predicted 
410ˆ −×X  

Error (%) 

100
ˆ

×
−

X

XX
 

1 0 0 0 
2 0.1967-0.0285i 0.1782-0.0264i -9.3376 
3 0.2941-0.0445i 0.2697-0.0406i -8.2895 
4 0.2414-0.0412i 0.2224-0.0376i -7.9233 
5 0.0608-0.0200i 0.0549-0.0181i -9.6820 
6 -0.1648+0.0096i -0.1535+0.0094i -6.8285 
7 -0.3318+0.0348i -0.3070+0.0326i -7.4504 
8 -0.3644+0.0447i -0.3375+0.0416i -7.3861 
9 -0.2479+0.0350i -0.2319+0.0327i -6.4566 

10 -0.0319+0.0102i -0.0347+0.0099i 7.5682 
11 0.1935-0.0189i 0.1729-0.0169i -10.6458 
12 0.3376-0.0395i 0.3071-0.0361i -9.0364 
13 0.3448-0.0428i 0.3160-0.0392i -8.3585 
14 0.2147-0.0273i 0.1993-0.0249i -7.1929 
15 0 -0.0001+0.0000i 0 

 
(b) MAC matrix for theoretical and predicted mode 

shapes 
theoretical 
 
predicted 

Mode 1 Mode 2 Mode 3 Mode 4 

Mode 1 0.9994 0.0000 0.0001 0.0000 
Mode 2 0.0000 0.9982 0.0000 0.0000 
Mode 3 0.0002 0.0000 0.9998 0.0000 
Mode 4 0.0000 0.0000 0.0000 0.9997 

 
(c) MSF matrix for theoretical and predicted mode 

shapes 
theoretical 
 
predicted 

Mode 1 Mode 2 Mode 3 Mode 4 

Mode 1 1.0418 -0.0002 -0.0126 -0.0002 
Mode 2 0.0002 1.0375 0.0003 0.0007 
Mode 3 0.0128 -0.0003 1.0381 -0.0009 
Mode 4 0.0002 -0.0013 0.0009 1.0800 

 
4. CONCLUSIONS 
 
This work presents the mode shape prediction model from 
ODS. The structural ODS is defined as the steady state 
response of the structure subject to a harmonic force. The 
simply supported beam structure is studied and shown for 
the feasibility of the developed prediction model numerically. 
The beam ODS response analysis is presented. The 
polynomial fit technique is also adopted to interpolate the 
mode shape function. The optimization problem is 
formulated to develop the mode shape prediction model. 
The main idea is to find the mode shapes such that the error 
between the measured and predicted ODS will be minimized. 
The numerical simulation is performed and validated for the 
feasibility in determining mode shapes from ODS. This work 
will improve the restriction of conventional modal testing that 
requires the tested structure in static. In particular, for 
harmonic excitation system, such as a rotor system, the 
developed methodology can be applied. This work thus 

enhances the experimental modal analysis technique for the 
structure in harmonic operating condition. 
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