公螺旋轉子之模態特性與模型驗證

王栢村¹ 王文志¹ 黄啟順² 劉家良²

¹國立屏東科技大學機械工程系、²漢鐘精機股份有限公司 國科會計畫編號: NSC -100-2622-E-194-006-CC2¹

摘要

本文結合有限元素分析與實驗模態分析對公螺旋 轉子進行模型驗證,主要針對公螺旋轉子實際結構建構 其有限元素模型並驗證確認模型之等效性。首先說明模 型驗證理念與流程,對公螺旋轉子進行有限元素分析, 由模態分析及簡諧響應分析,分別求得理論的模態參數 及頻率響應函數,並以軸向(Axial)、垂直(Vertical)及水 平(Horizontal)三方向進行實驗模態分析,擷取實驗對應 結果進行比對。結果顯示理論分析與實驗求得的模態特 性相當吻合,也能有效解讀公螺旋轉子的振動模態物理 意義。透過模型驗證手法獲得等效於實際結構之公螺旋 轉子有限元素模型,未來可應用此有限元素模型進行響 應預測與模型變更之設計分析,以加速產品研發時程。

關鍵詞:有限元素分析、實驗模態分析、模型驗證、螺 旋轉子、模態參數。

1. 前言

公螺旋轉子為螺旋式壓縮機內部進行氣體壓縮之 主要元件之一,其螺旋式壓縮機主要應用於大型空調、 食品冷凍等用途,在科技日新月異的市場競爭及需求上, 不斷的對壓縮機進行改良設計或研發新型壓縮機,而研 發過程中需耗費大量的開模成本與實際實驗量測分析 耗費的時間,大大的影響研發人員進行開發或改良產品 的困難度,因此藉由等效於實際結構之有限元素模型進 行響應預測與模型變更,可大量減少開發之成本與時 程。

王等人[1]應用實驗模態分析技術驗證理論所模擬 簡支板之邊界條件與實際邊界之等效性。Wang et al. [2] 運用理論與實驗模態分析技術進行高爾夫球木桿之模 型驗證,分別探討高爾夫球木桿在不同邊界條件下之振 動特性,包括自由邊界、手握邊界、固定邊界。王等人 [3]利用實驗模態分析與有限元素分析,對高爾夫球頭之 碳纖維材料試片進行模型驗證,藉由理論模型材料參數 不斷修正,測定出試片之機械性質包括楊氏係數、浦松 比與剪力模數,並獲得與實際結構等效之有限元素模型 。王等人[4]對一多功能車輛(utility vehicle, UV)車架, 應用實驗模態分技術探討其振動特性,並透過預測試分 析,來確保UV車架之實驗品質與正確性。王等人[5]結 合有限元素分析與實驗模態分析進行工具機之模型驗 證,為探討工具機具螺栓接合部分,故針對滑件與基座 先分別進行模型驗證,確立各組件之實體結構與有限元 素模型等效後,再進而組合成完整螺栓複合結構之模型 驗證。王等人[6]同樣以結合理論與實驗模態分析方式, 分別對車架、前叉、及車架與前叉組合,以堆疊概念進 行結構組合層次之模型驗證,並對驗證後模型進行響應 預測,模擬車架與前叉在受力後之變形量與應力強度是 否符合規範。

本文研究目的為確認公螺旋轉子之有限元素模型 等效於實際結構,即透過模型驗證流程完成模型確認。 在實驗模態分析部分,感測器固定於軸向(A)、垂直(V) 及水平(H)三個方向分別同時進行量測,優點是一次可 獲得三組實驗數據,再進而探討三組不同方向之實驗量 測結果比較,並以實驗所得之結構模態參數為基準進行 有限元素模型參數之修正,以達到模型驗證之目標。

2. 模型驗證理念

本節說明模型驗證之理念與完整流程,圖1為模 型驗證流程圖,主要進行實驗模態分析與有限元素分析, 藉由所得到的模態參數進行比對驗證,目的為確認有限 元素模型能夠等效於實際結構。首先以實際結構之幾何 參數建構有限元素模型進行模態分析,來獲得理論模態 參數包含自然頻率及模態振型;實驗部分為對實際結構 進行實驗模態分析量測結構之頻率響應函數,再經由曲 線嵌合軟體擷取實際結構之模態參數,包含自然頻率、 阻尼比及模態振型,最後以實驗之模態參數為基準重覆 修正有限元素模型之材料參數,使得理論與實驗所得模 態參數相符合,即理論有限元素模型等效於實際結構, 以完成模型驗證。

待模型驗證成功後,即可以進行響應預測與模型 變更,圖2為模型變更流程圖,經由模型驗證獲得等效 之有限元素模型,足以代表並反應實際結構系統特性, 可以在假設已知的輸入條件下,對結構系統作預測響應 主要效益是可以減少實際結構之實驗量測分析,若在響 應預測發現結構系統響應不符合設計需求,或是有結構 破壞之處,可透過模型變更對結構修改,反覆進行響應 預測來達到設計需求,其設計完成後必須再經過一次模 型驗證流程,以確認變更後模型之有效性。

The 36th National Conference on Theoretical and Applied Mechanics, November 16-17, 2012

圖 2、模型變更流程圖

圖 3、公螺旋轉子之幾何尺寸

圖 4、公螺旋轉子有限元素模型

圖 4、實驗架設示意圖

圖 6、單軸向加速度規固定位置

3. 建構有限元素模型

模型驗證要進行有限元素分析,本節說明如何建 構有限元素模型,圖 3 為公螺旋轉子實際結構之幾何尺 寸,首先由 3D 繪圖軟體(Solidworks)繪製 CAD 圖檔, 再匯入有限元素分析軟體(ANSYS)建構幾何模型,圖 4 為公螺旋轉子有限元素模型,其模型使用線性立方體元 素(Solid 45),每個元素有 8 個節點,每個節點自由度為 *u、v、w* 三個方向位移。材料參數採等向性材料模型, 楊氏系數為 203GPa,浦松比為 0.3,密度為 7850Kg/m³, 有限 元素分割採固定 元素 大小進行自由分割(Free Mesh),共分割 282,635 個元素及 52,688 個節點,無設 定邊界條件及外力負荷,以模擬自由邊界方式進行模態 分析,求得理論模態參數,包含自然頻率、模態振型。

國立中央大學 101年11月16-17日

The 36th National Conference on Theoretical and Applied Mechanics, November 16-17, 2012

4. 實驗方法

本節說明公螺旋轉子之實驗模態分析,實驗儀器 架設如圖4所示,包括頻譜分析儀(SigLab)、衝擊鎚(PCB 086C03)、單軸向加速度規(ENDEVCO 27AM1-10)、筆 記型電腦等。為進行 EMA,需對公螺旋轉子規劃實驗 量測點數,首先參考表1之公螺旋轉各模態之模態振型 圖及物理意義,其中,以(n,1)轉子轉軸之彎曲模態 (bending mode)最多,n=3時,模態振型有2個節點(nodal point),n愈大,節點數愈多;又因為此轉子有近似軸對 稱特性,可觀察,各彎曲模態均有自然頻率相近且模態 振型相同,僅彎曲方向差90度相位角的軸對稱模態之 現象;如F01/F02,F03/F04。其他也有長軸及短軸之扭 轉模態(torsional mode)以及伸縮模態(extension mode)。

根據表 1 所觀察之轉子模態特性規則, EMA 之實 驗量測點如圖 5, ④因轉子齒型無局部模態(local mode) 現象,僅在長軸、短軸之扭轉模態及伸縮模態時齒型部 份才有明顯的扭轉模態特性,故主要以圓軸進行佈點量 測,採 4 倍原則,將圓軸上分成六等份,每等份規劃 16 個徑向(Radial)量測點,另外圖 5 中 I、IV 為短軸、 長軸端面,II、III 為齒型端面,在 I、II、III 及 IV 上規 劃 22 個軸向(Axial)量測點,同時 II、III 規劃 10 個週向 (Circumferential)量測點,同時 II、III 規劃 10 個週向 (Circumferential)量測點,共 128 個實驗量測點,圖 6 為 固定三個加速規於轉子長軸端面示意照片,可分別量測 轉子 A、V、H 三個方向之加速度。 圖本實驗採固定加 速規移動衝擊鎚敲擊轉子之軸向、徑向及週向方式進行 實驗量測。頻譜分析儀設定頻寬範圍為 0-10kHz、解析 頻率 3.125Hz。

利用三顆單軸向加速規分別固定於公螺旋轉子之 長軸端軸向(A)、垂直(V)及水平(H)方向如圖 6 所示,優 點為可一次完成三組不同方向之實驗量測。藉由實驗量 測獲得的頻率響應函數(FRF)匯入曲線嵌合軟體,以求 得公螺旋轉子之實際模態參數,包含自然頻率、模態振 型及阻尼比。

5. 結果與討論

本節將對公螺旋轉子分別由實驗模態分析所獲得 A、V及H方向之三組實驗數據與有限元素分析結果進 行比對驗證,包括頻率響應函數、自然頻率及模態振 型。

圖 4(a)及圖 5(a)為 A 方向同點與不同點之頻率響 應函數圖,其中同點(i = j),即衝擊鏈敲擊之輸入點 j=104,加速規量測輸出點 i=104,所獲得的頻率響應函 數稱為同點頻率響應函數(point FRF),且同點 FRF 特 性在兩兩共振點間會有一反共振點出現,圖 4(a)有此合 理現象;不同點(j=98),即 i=104, j=98,所獲得的頻率 響應函數稱為轉移頻率響應函數(transfer FRF)。圖 4(a)、 圖 5(a)中理論、實驗及合成頻率響應函數曲線,在對應 上相當吻合代表曲線嵌合的正確性,圖 4(b)及圖 5(b)為 A 方向同點與不同點關聯性函數圖,當關聯性函數趨近於 1 表示頻率響應函數可信度越高,圖 4(b)及圖 5(b)中 關聯性函數,除反共振點因響應小導致關聯性函數偏低 外,整體上均趨近於 1 表示實驗結果是有可信度的。

圖 5、不同點(i=104,j=98)(A 方向)

表1、理論與實驗之自然頻率總表(A 方向)

						- • 、	,
mode	EMA(A) (Hz)	mode	FEA (Hz)	誤差 (%)	阻尼比 (%)	累計平均 阻尼比(%)	物理 意義
-	-	F-01	712.3	-	-	-	(3,1)
A-01	711.47	F-02	713.5	0.29	0.0280	0.02802	彎曲對稱
A-02	1568.8	F-03	1581.3	0.80	0.0146	0.02129	(4,1)
A-03	1575.1	F-04	1584.2	0.58	0.0119	0.01816	彎曲對稱
A-04	2547	F-05	2559.9	0.51	0.0631	0.02939	(5,1)
A-05	2578.3	F-06	2582.5	0.16	0.0200	0.02752	彎曲對稱
A-06	2824.6	F-07	2814.5	-0.36	0.0666	0.03404	1st 長軸扭轉
A-07	4146	F-08	4114.7	-0.75	0.0389	0.03474	長軸伸縮
A-08	4461.2	F-09	4478.3	0.38	0.0524	0.03694	(6,1)
A-09	4495.1	F-10	4505	0.22	0.0222	0.03531	彎曲對稱
A-10	4807.7	F-11	4776.6	-0.65	0.0067	0.03245	1st 短軸扭轉
A-11	6092.3	F-12	6095.7	0.06	0.0248	0.03176	2st 長軸扭轉
	-	F-13	6102.1	-	-	-	(7,1)
A-12	6132.4	F-14	6132.2	0.00	0.0412	0.03254	彎曲對稱
A-13	6897.1	F-15	6855.3	-0.61	0.0234	0.03184	短軸伸縮
A-14	7226.5	F-16	7202.1	-0.34	0.0428	0.03262	3st 長軸扭轉
A-15	7542.5	F-17	7584.3	0.55	0.0257	0.03216	(8,1)
A-16	7567.4	F-18	7596.2	0.38	0.0292	0.03197	彎曲對稱
A-17	9366.3	F-19	9406.1	0.42	0.0285	0.03177	(9,1)
A-18	9422.3	F-20	9451.3	0.31	0.0337	0.03188	彎曲對稱
A-19	9719.9	F-21	9653	-0.69	0.0154	0.03101	整體伸縮

The 36th National Conference on Theoretical and Applied Mechanics, November 16-17, 2012

表1為有限元素分析與實驗模態分析(A 方向)之自然頻 率總表,表1 中除 F-01、F-013 到外,其餘的19 態自 然頻率誤差皆在1%以下,令 F-01 無對應之原因為此模 態非軸向振動所致,最大阻尼比出現在 A-06 模態為 0.067%,累計平均阻尼比為0.031%。

圖 6(a)及圖 7(a)為 V 方向同點與不同點之頻率響 應函數圖,圖 6(a)、圖 7(a)中同點(i=j=96)及不同點(i=96、 j=1),在理論、實驗及合成頻率響應函數曲線,對應上 皆相當吻合代表曲線嵌合的正確性,圖 6(b)及圖 7(b)為 V 方向同點與不同點關聯性函數圖,圖 6(b)及圖 7(b)中 關聯性函數,除反共振點及高頻關聯性函數較低外,其 餘均趨近於 1,表示實驗結果是有可信度的。表 2 為有 限元素分析與實驗模態分析(V 方向)之自然頻率總表, 表 2 中除 F-02、F-04 自然頻率無對應到,因此 2 模態 振型屬 H 方向之彎曲模態,其餘的 17 個模態自然頻率 比對誤差皆在 1%以下,而最大阻尼比出現在 V-03 模態 為 0.064%,累計平均阻尼比為 0.031%。

2、理論與實驗之自然頻率總表(V方向)

	衣 2、 埕 珊 兴 貝 橄 < 日 然 殃 平 總 衣 (♥ 刀 向)									
mode	EMA(V)	mode	FEA	誤差	阻尼比	累計平均	物理			
mode	(Hz)	mode	(Hz)	(%)	(%)	阻尼比(%)	意義			
V-01	710.6	F-01	712.3	0.24	0.0139	0.01386	(3,1)			
-	-	F-02	713.5	1	-	-	彎曲對稱			
V-02	1568.8	F-03	1581.3	0.80	0.0143	0.01409	(4,1)			
-	-	F-04	1584.2	-	-	-	彎曲對稱			
V-03	2547.0	F-05	2559.9	0.51	0.0639	0.03069	(5,1)			
V-04	2577.1	F-06	2582.5	0.21	0.0282	0.03006	彎曲對稱			
V-05	2828.3	F-07	2814.5	-0.49	0.0561	0.03526	1st 長軸扭轉			
V-06	4146.2	F-08	4114.7	-0.76	0.0377	0.03567	長軸伸縮			
V-07	4461.1	F-09	4478.3	0.39	0.0523	0.03805	(6,1)			
V-08	4494.9	F-10	4505	0.22	0.0222	0.03607	彎曲對稱			
V-09	4806.9	F-11	4776.6	-0.63	0.0063	0.03277	1st 短軸扭轉			
V-10	6091.5	F-12	6095.7	0.07	0.0245	0.03194	2st 長軸扭轉			
V-11	6099.4	F-13	6102.1	0.04	0.0358	0.03229	(7,1)			
V-12	6132.0	F-14	6132.2	0.00	0.0405	0.03298	彎曲對稱			
V-13	6895.4	F-15	6855.3	-0.58	0.0194	0.03194	短軸伸縮			
V-14	7224.9	F-16	7202.1	-0.32	0.0471	0.03302	3st 長軸扭轉			
V-15	7542.2	F-17	7584.3	0.56	0.0258	0.03254	(8,1)			
V-16	7566.0	F-18	7596.2	0.40	0.0207	0.03180	彎曲對稱			
V-17	9365.9	F-19	9406.1	0.43	0.0300	0.03169	(9,1)			
V-18	9421.7	F-20	9451.3	0.31	0.0351	0.03188	彎曲對稱			
V-19	9720.0	F-21	9653	-0.69	0.0152	0.03101	整體伸縮			

圖 8(a)及圖 9(a)為 H 方向同點與不同點之頻率響應函數 圖,圖 8(a)及圖 9(a)中同點(i=32、j=32)及不同點(i=32、 j=1),在理論、實驗及合成頻率響應函數曲線,對應上 皆相當吻合代表曲線嵌合的正確性,圖 8(b)及圖 9(b)為 H 方向同點與不同點關聯性函數圖,圖 8(b)及圖 9(b)中 關聯性函數,除反共振點及高頻關聯性函數較低外,其 餘均趨近於 1 表示實驗結果是有可信度的。表 3 為有限 元素分析與實驗模態分析(H 方向)之自然頻率總表,表 3 中 F-01、F-03 及 F-13 屬於 V 方向之彎曲模態、F-11 屬於 A 方向之軸向模態為自然頻率無對應之原因,其 餘的 15 個模態自然頻率誤差皆在 1%以下,而最大阻尼 比出現在 H-03 模態為 0.068%,累計平均阻尼比為 0.035%。

國立中央大學 101年11月16-17日

The 36th National Conference on Theoretical and Applied Mechanics, November 16-17, 2012

表 3、理論與實驗之自然頻率總表(H 方向)

mode	EMA(H) (Hz)	mode	FEA (Hz)	誤差 (%)	阻尼比 (%)	累計平均 阻尼比 (%)	物理 意義
-	-	F-01	712.3	-	-	-	(3,1)
H-01	712.8	F-02	713.5	0.10	0.0279	0.02793	彎曲對稱
-	-	F-03	1581.3	-	-	-	(4,1)
H-02	1575.1	F-04	1584.2	0.58	0.0118	0.01986	彎曲對稱
H-03	2547.0	F-05	2559.9	0.51	0.0684	0.03605	(5,1)
H-04	2578.3	F-06	2582.5	0.16	0.0199	0.03201	彎曲對稱
H-05	2824.9	F-07	2814.5	-0.37	0.0661	0.03882	1 st 長軸扭轉
H-06	4147.0	F-08	4114.7	-0.78	0.0463	0.04007	長軸伸縮
H-07	4461.5	F-09	4478.3	0.38	0.0504	0.04154	(6,1)
H-08	4495.2	F-10	4505	0.22	0.0222	0.03913	彎曲對稱
-	-	F-11	4776.6	-	-	-	1st 短軸扭轉
H-09	6093.9	F-12	6095.7	0.03	0.0449	0.03977	2st 長軸扭轉
-	-	F-13	6102.1	-	-	-	(7,1)
H-10	6132.4	F-14	6132.2	0.00	0.0412	0.03991	彎曲對稱
H-11	6894.9	F-15	6855.3	-0.57	0.0172	0.03785	短軸伸縮
H-12	7224.5	F-16	7202.1	-0.31	0.0468	0.03860	3st 長軸扭轉
H-13	7540.8	F-17	7584.3	0.58	0.0250	0.03755	(8,1)
H-14	7567.3	F-18	7596.2	0.38	0.0283	0.03689	彎曲對稱
H-15	9365.6	F-19	9406.1	0.43	0.0305	0.03646	(9,1)
H-16	9422.1	F-20	9451.3	0.31	0.0338	0.03630	彎曲對稱
H-17	9720.2	F-21	9653	-0.69	0.0141	0.03499	整體伸縮

表4為理論與三組實驗A、V及H方向之模態振型比較 表,採用模態保證指標(MAC)來確認模型比對之相似度, 當MAC值趨近於1代表兩模態振型相對應,表4中理 論的21個模態振型其物理意義可分成彎曲、伸縮及扭 轉三種物理意義的模態振型,其中彎曲模態又具有對稱 特性,即兩兩自然頻率相近,僅振型擺動方向相差90 度角,即V與H方向,其振型比對結果討論如下:

 取量測點短軸軸向 6 個量測點進行 A 方向 MAC 比對,從表 4 中理論與 A 方向實驗的 模態振型比對,除在 A-10 模態 MAC 值較差 外,伸縮模態對應上 MAC 值在 0.9 以上, 其餘模態振型 MAC 值也都有 0.7 以上,可 判斷實驗與理論之振型相當一致。在A方向 A-10 模態 MAC 值在 0.06,原因為 A-10 模 態振型之物理意義上屬於扭轉模態導致 A 方向 MAC 比對相對較差。

- 2. 取量測點第1-16個量測點進行 V 方向 MAC 比對,從表4中理論與 V 方向實驗的模態振 型比對,在 V 方向的彎曲模態 MAC 值都在 0.8 以上,可判斷實驗與理論之振型相當一 致。除 V-11 模態 MAC 值為 0.61,為該模態 阻尼比相對較高造成,及其他扭轉、伸縮及 H 方向彎曲模態 MAC 值相對較差,其原因 為 V 方向 MAC 與模態作動方向不同所導 致。
- 3. 取量測點第 17-32 個量測點進行 H 方向的 MAC 比對,從表 4 中理論與 H 方向實驗的 模態振型比對,在 H 方向的彎曲模態 MAC 值都在 0.8 以上,可判斷實驗與理論之振型 相當一致,其他扭轉、伸縮及 V 方向彎曲模 態 MAC 值相對較差,其原因為 H 方向 MAC 與模態作動方向不同所導致。

以同時量測A、V及H方向之實驗模態分析與有 限元素分析之結果進行比對,如頻率響應函數、自然頻 率及模態振型,在三組方向的實驗、合成及理論頻率響 應函數曲線對應上皆相當吻合,代表曲線嵌合之正確性 。三組方向之實驗與理論自然頻率比對上誤差皆在1% 以下,且自然頻率誤差百分比都在正負間變動,再依 MAC 值判斷不同實驗量測方向之模態振型與理論模態 振型對應上是相當一致,表示模態參數比對良好,已達 到模型驗證目的。

由三組A、V及H方向之實驗結果比對自然頻率、 阻尼比及累計平均阻尼比,再次確認實際模態參數之正 確性,表5為A、V及H方向EMA所求得之自然頻率 比較表,表5中以A方向之實驗自然頻率為基準與V、 H方向之實驗自然頻率比較,誤差除少部分趨近於0% 外,其於自然頻率皆完全吻合。表6A、V及H方向 EMA所求得之模態阻尼比,表6中在3組方向之最大 與次大阻尼比約為0.06%,對應之物理意義為V方向 (5,1)彎曲模態及第一個長軸扭轉模態,而累計平均阻尼 比也相當吻合約在0.03%左右。

6. 結論

本文利用有限元素分析與實驗模態分析進行公螺 旋轉子之模型驗證,由分析結果得知公螺旋轉子結構具 有彎曲、伸縮、扭轉模態特性,並針對轉子模態特性以 A、V及H方向同時量測之實驗手法,獲得與理論分析 之模態參數完整對應,且比較三組量測結果再次確認實 際模態參數之正確性,進而獲得等效於實際結構之公螺 旋轉子有限元素模型,在未來新型轉子設計上可應用此 模型驗證獲得等效之有限元素模型,來代表實際結構進 行響應預測以模擬反應實際結構之系統特性,進而模型 變更達到產品品質提升,以及減少實際實驗量測分析所 花費的時程與成本。 中華民國力學學會第三十六屆全國力學會議 國立中央大學 The 36th National Conference on Theoretical and Applied Mechanics, November 16-17, 2012

模 模 模 模 А V Η EMA 物理 EMA EMA 方向 態 態 態 FEA 方向 態 方向 (H) 意義 (A) (V) MAC 數 數 MAC 數 MAC 數 Wind and (3,1)F-01 V-01 0.96 彎曲 -(V) (3,1) 0.99 A-01 彎曲 F-02 0.79 H-01 _ -(H) (4,1)A-02 F-03 0.80 V-02 0.96 彎曲 (V) (4,1)0.95 0.99 F-04 A-03 H-02 彎曲 _ (H) (5,1) F-05 A-04 0.90 V-03 0.97 H-03 0.43 彎曲 (V) (5,1)0.98 F-06 A-05 0.96 V-04 0.59 H-04 彎曲 (H) 1st A-06 F-07 0.93 V-05 0.43 H-05 0.56 長軸 扭轉 in the form 長軸 F-08 A-07 0.99 V-06 0.43 H-06 0.63 伸縮 (6,1) 0.47 F-09 A-08 0.92 V-07 0.95 H-07 彎曲 (V) n O Sar Frank (6,1) A-09 F-10 0.96 V-08 0.13 H-08 0.96 彎曲 (H) and the state 1st F-11 0.06 V-09 0.84 短軸 A-10 扭轉

表 4 ·	、理論與	實驗之模	態振型	比較總表
-------	------	------	-----	------

F-12	A-11	Elimente Secondaria	0.94	V-10	0.26	H-09	Contraction of the second seco	0.07	2st 長軸 扭轉
F-13	-	-	-	V-11	0.61	-	-	-	(7,1) 彎曲 (V)
F-14	A-12		0.95	V-12	0.01	H-10	A state	0.95	(7,1) 彎曲 (H)
F-15	A-13	A state	0.99	V-13	0.06	H-11	A start	0.18	短軸
F-16	A-14	A second	0.99	V-14	0.56	H-12	A CONTRACTOR	0.23	3st 長 抽 轉
F-17	A-15		0.83	V-15	0.91	H-13		0.82	(8,1) 彎曲 (V)
F-18	A-16		0.95	V-16	0.45	H-14	Reality of the second s	0.93	(8,1) 彎曲 (H)
F-19	A-17	and the second s	0.91	V-17	0.86	H-15		0.22	(9,1) 彎曲 (V)
F-20	A-18	a presentaria	0.93	V-18	0.36	H-16	Reference of the second s	0.88	(9,1) 彎曲 (H)
F-21	A-19		0.99	V-19	0.10	H-17		0.21	整體 伸縮

中華民國力學學會第三十六屆全國力學會議 國立中央大學 The 36th National Conference on Theoretical and Applied Mechanics, November 16-17, 2012

まち、A、VIII十一下MA 化书组中白始版实上标志

衣J	• A • •	XI	1カ回	ENTP	小川水	付く日	日然沙	早午儿牧衣
mode	EMA (A) (Hz)	mode	EMA (V) (Hz)	誤差 (%)	mode	EMA (H) (Hz)	誤差 (%)	物理 意義
-	-	V-01	710.6	-	-	-	-	(3,1)
A-01	711.47	-	-	-	H-01	712.8	0.19	彎曲對稱
A-02	1568.8	V-02	1568.8	0.00	-	-	-	(4,1)
A-03	1575.1	-	-	-	H-02	1575.1	0.00	彎曲對稱
A-04	2547	V-03	2547	0.00	H-03	2547	0.00	(5,1)
A-05	2578.3	V-04	2577.1	-0.05	H-04	2578.3	0.00	彎曲對稱
A-06	2824.6	V-05	2828.3	0.13	H-05	2824.9	0.01	1 st 長軸扭轉
A-07	4146	V-06	4146.2	0.00	H-06	4147	0.02	長軸伸縮
A-08	4461.2	V-07	4461.1	0.00	H-07	4461.5	0.01	(6,1)
A-09	4495.1	V-08	4494.9	0.00	H-08	4495.2	0.00	彎曲對稱
A-10	4807.7	V-09	4806.9	-0.02	-	-	-	1 st 短軸扭轉
A-11	6092.3	V-10	6091.5	-0.01	H-09	6093.6	0.02	2 st 長軸扭轉
-	-	V-11	6099.4		-	-	-	(7,1)
A-12	6132.4	V-12	6132	-0.01	H-10	6132.4	0.00	彎曲對稱
A-13	6897.1	V-13	6895.4	-0.02	H-11	6894.9	-0.03	短軸伸縮
A-14	7226.5	V-14	7224.9	-0.02	H-12	7224.5	-0.03	3 st 長軸扭轉
A-15	7542.5	V-15	7542.2	0.00	H-13	7540.8	-0.02	(8,1)
A-16	7567.4	V-16	7566	-0.02	H-14	7567.3	0.00	彎曲對稱
A-17	9366.3	V-17	9365.9	0.00	H-15	9365.6	-0.01	(9,1)
A-18	9422.3	V-18	9421.7	-0.01	H-16	9422.1	0.00	彎曲對稱
A-19	9719.9	V-19	9720	0.00	H-17	9720.2	0.00	整體伸縮

表 6、A、V 及 H 方向 EMA 所求得之模態阻尼比

А	方向	V	方向	Н	方向	
阻尼比 (%)	累計平均 阻尼比 (%)	阻尼比 (%)	累計平均 阻尼比 (%)	阻尼比 (%)	累計平均 阻尼比(%)	物理 意義
-	-	0.0139	0.01386	-	-	(3,1)
0.0280	0.02802	-	-	0.0279	0.02793	彎曲對稱
0.0146	0.02129	0.0143	0.01409	-	-	(4,1)
0.0119	0.01816	-	-	0.0118	0.01986	彎曲對稱
0.0631	0.02939	0.0639	0.03069	0.0684	0.03605	(5,1)
0.0200	0.02752	0.0282	0.03006	0.0199	0.03201	彎曲對稱
0.0666	0.03404	0.0561	0.03526	0.0661	0.03882	1st 長軸扭轉
0.0389	0.03474	0.0377	0.03567	0.0463	0.04007	長軸伸縮
0.0524	0.03694	0.0523	0.03805	0.0504	0.04154	(6,1)
0.0222	0.03531	0.0222	0.03607	0.0222	0.03913	彎曲對稱
0.0067	0.03245	0.0063	0.03277	-	-	1st 短軸扭轉
0.0248	0.03176	0.0245	0.03194	0.0449	0.03977	2st 長軸扭轉
-	-	0.0358	0.03229			(7,1)
0.0412	0.03254	0.0405	0.03298	0.0412	0.03991	彎曲對稱
0.0234	0.03184	0.0194	0.03194	0.0172	0.03785	短軸伸縮
0.0428	0.03262	0.0471	0.03302	0.0468	0.03860	3st 長軸扭轉
0.0257	0.03216	0.0258	0.03254	0.0250	0.03755	(8,1)
0.0292	0.03197	0.0207	0.03180	0.0283	0.03689	彎曲對稱
0.0285	0.03177	0.0300	0.03169	0.0305	0.03646	(9,1)
0.0337	0.03188	0.0351	0.03188	0.0338	0.03630	彎曲對稱
0.0154	0.03101	0.0152	0.03101	0.0141	0.03499	整體伸縮

7. 致謝

本文承蒙漢鐘精機股份有限公司與國科會 100 年 度產學合作計畫「環保冷媒雙螺旋壓縮機之關鍵技術開 發(1/2)」(國科會計畫編號: NSC10 0-2622-E-194-006-CC2),經費補助提供,特此致謝。

8. 參考文獻

- [1] 王栢村,陳榮亮,1997,「簡支板實驗模態分析較具 之製作」,第十二屆全國技術及職業教育研討會,第 1-10頁。
- [2] Wang, B. T., and Wu, G. Z., 2005, "Modal Properties of Golf Club Wood Driver in Different Boundary Conditions, "Proceedings of Thirteenth National Conference on the Society of Sound and Vibration, Chang-Hua, Paper No.: C10.
- [3] 王栢村,張年華,黃裕仁,張佐銘,2010,「應用實 驗模態分析於碳纖維試片之機械性質測定」,機械技 師學刊,屏東,論文編號:C22。
- [4] 王栢村,陳昱成,陳勇全,2010,「車架之實驗模態 分析實務與振動模態特性探討」, 中華民國振動與噪 音工程學會第十八屆學術研討會,台北,論文編號: C-150 °
- [5] 王栢村, 謝宗廷, 陳正陽, 周芳俊, 2011, 「工具機 螺栓接合面之模型驗證」,第十九屆中華民國振動與 噪音工程學術研討會,彰化,論文編號:D-06。
- [6] 王栢村,陳昱成,2011,「車架與前叉組合件之模型 驗證與衝擊試驗響應預測」,機械技師學刊,第4卷, 第2期,第26-33頁。