隨機振動與熱效應複合負載之印刷電路板響應預測分析 Response Prediction for PCB Subject to Coupling Loadings of Random Vibration and Thermal Effects

1 王栢村 2 梁秀瑋 2 許富翔 3 賴逸少 3 葉昶麟 3 李英志

¹屏東科技大學機械工程系教授 ²屏東科技大學機械工程系碩士 ³日月光集團高雄廠應力可靠度實驗室

摘要

透過可靠且準確之印刷電路板分析模型便 可預測結構於衝擊、振動甚至具熱效應模擬情況 下系統之響應。本文利用經實驗模態分析方法及 有限元素分析法模型驗證之印刷電路板精細有 限元素模型,依循 JEDEC 制定振動試驗規範進 行包含熱效應之頻譜響應分析,藉由理論及實驗 之加速度功率頻譜密度函數比對驗證,可確認此 印刷電路板模型正確性,並進一步預測印刷電路 板在具熱效應與隨機振動測試耦合狀態下之疲 勞破壞。本文建立振動與熱傳耦合驗證分析流 程,基於隨機輸入之常態分佈假設,引用 Goodman 圖,對印刷電路板具熱效應於隨機激振 下進行疲勞破壞評估,由本文所建立分析方法將 有利於未來印刷電路板於振動與熱傳耦合負載 下之設計分析。

1.前言

隨著科技日新月異,人們對於電子產品使用 與便利性之要求相對提高,使得印刷電路板 (Printed Circuit Board, PCB)尺寸設計愈趨嚴苛, 而產品縮小所伴隨的是在運輸、使用環境及高溫 熱能等情況下其使用壽命之議題,利用 FEA 分析 得到 PCB 有無熱效應之結構特性,進而對 PCB 進行振動與熱傳之耦合分析,藉此探討 PCB 於耦 合效應之特性,以便能對 PCB 進行最佳化結構設 計。

現今的電子封裝產業中,PCB 於運輸或使用 等因素,上述因素造成之破壞儼然成為設計的關 鍵,因此藉由 PCB 振動特性之研究與探討,達到 PCB 最佳化設計方法,王等人[1]結合 FEA 與 EMA 對 PCB 進行模型驗證,經由理論與實驗之 振動模態特性參數比對,進而獲得等效於實際結 構之等效有限元素模型。王等人[2]也以麥克風取 代加速度計為感測器,對微小封裝體(SPBGA)進 行模型驗證,透過模態參數驗證可確立此一方法 之可行性及正確性。藉由以上之驗證結果,得以 瞭解 PCB 與封裝體之振動特性,王等人[3]則針 對 PCB 上之封裝體數量其振動特性與響應預測 進行探討,套用已驗證完成之模態參數進行頻譜 響應分析,將所預測之加速度、應變功率頻譜密 度函數及應力值,比較不同封裝體頻譜分析結 果,由模擬預測結果得知於隨機激振下單一封裝 體 PCB 中央會產生應力集中現象。藉由模擬分析 預測可得知 PCB 於隨機激振之響應,王等人[4] 對兩塊不同規格 PCB 之變異性進行探討,利用 FEA 及 EMA 完成模型驗證,以加速度計及應變 規為感測器,量測隨機激振下之響應輸出,並與 理論分析之加速度、應變值比對驗證,藉由常態 分佈之假設可得最大主應力及麥西斯應力,透過 響應分析配合 Goodman 圖便可對 PCB 進行疲勞 強度破壞預測與探討。

結合 EMA 及 FEA 方法可得 PCB 結構之振 動特性,配合 JEDEC 規範對 PCB 進行隨機激振 試驗與理論響應分析,進而深入探討結構產生失 效或破壞之位置, Yang et al. [5]便對 PCB 進行激 振疲勞測試,並於激振時持續觀察錫球銲接接點 情形,透過實驗觀察之結果發現封裝模組因激振 導致失效破壞,而失效破壞位置通常發生於錫球 銲接接點之四個角落處。Wong et al. [6]針對球閘 陣列封裝(BGA)焊錫接點透過FEA進行疲勞壽命 預測與理論公式相互驗證。Perkins and Sitaraman [7]針對陶瓷柱閘陣列封裝(CCGA)焊接接點以不 同加速度進行正弦激振,並建構對應實際結構之 等效分析模型,由理論分析與正弦激振之結果, 得知焊接陶瓷柱其最大彎曲應力位置及失效處 皆靠近陶瓷柱接點固定位置;而電路板所產生之 彎曲會導致焊接陶瓷柱產生破裂,過程中之慣性 力則會加速陶瓷柱破裂的情況。

電子產品在使用狀態下會因使用時間長 短、晶片功率與散熱等問題,導致封裝體晶片溫 度迅速變化,透過功率與溫度耦合循環測試對 PCB進行探討,觀察溫度變化對銲錫接點可靠度 之影響便相當重要,故黃等人[8]針對疊合封裝晶 片模組,進行功率大小與溫度耦合循環試驗,測 試循環溫度範圍在-40℃至125℃皆以先降溫、持 溫再升溫為基礎,而在理論分析中則以暫態溫度 場結果內插至熱應力模型進行可靠度分析,由理 論分析之結果可發現純粹溫度循環測試有較長 的疲勞壽命,而功率與溫度耦合循環對疲勞壽命 有極大的影響。黃等人[9]以熱傳與應力循環耦合 分析探討雙層堆疊晶片,在功率與溫度耦合循環 測試下,晶片功率開啟與順序對銲錫接點可靠度 之影響,經由理論數值分析可得知功率與應力循 環測試使得疲勞壽命降低,而雙層中兩晶片若交 互運作,引發的溫度補償效應則使其疲勞壽命明 顯延長。

本文應用 Wang et al.[10]具熱效應 PCB 有限 元素模型驗證結果將模型延伸至函熱效應之隨 機激振響應預測,由加速度響應預測實驗與理論 之比對確認頻譜分析之正確性,再以 JEDEC 規 範中之 E-Level 不設定加速度計之質量效應進行 理論頻譜響應分析,再以理論預測 PCB 於熱傳與 隨機激振耦合情況下之疲勞破壞。

2.印刷電路板之隨機振動試驗

本文探討僅 PCB 無熱效應之隨機振動試驗 對應之有限元素分析,並探討 PCB 貼附加熱片 時,無加熱、加熱至 75℃及 125℃之隨機激振頻 響應分析。

2.1 隨機振動試驗

圖1為JEDEC隨機激振試驗規範共九種不同 模擬情形之功率頻譜密度函數輸入設定,其中D 到I為電子零組件可能遭遇之情況,故試驗規範 建議以此範圍作為隨機激振之基礎,而本文則選 擇E-Level做為後續隨機激振試驗輸入值。

圖 1 JESD22-B103-B 隨機激振試驗規範[11]

圖 2 為依 JEDEC 規範進行 PCB 隨機振動之 實驗架構。圖 2(a)為使用振動試驗機進行隨機振 動試驗之儀器量測架構, PCB 連同治具固定於振 動平台,安置於振動試驗機之激振器上方,透過 隨機振動量測系統設定 JEDEC E Level 振動試驗 規範,使得 Dactron 控制器產生符合 JEDEC E Level 規範之功率頻譜密度函數之輸入訊號,將 加速度計固定於 PCB 響應較大之量測點上,透過 頻譜分析儀獲得加速度計所量測到結構之輸出 加速度功率頻譜密度函數,可做為隨機激振實驗 輿理論分析比對應用。為考慮 PCB 具熱效應於隨 機激振下可能改變熱對流係數,故於 PCB 具熱效 應受隨機激振後,以紅外線熱影像儀拍攝 PCB 表 面溫度並進行探討。

(b)加速度計為感測器(c)量測點規劃圖 2 隨機振動實驗示意圖[10]

2.2 隨機振動之響應分析與疲勞破壞評估

利用有限元素分析套裝軟體 ANSYS 可分析 PCB 上各觀察點之加速度功率頻譜密度函數 (G_{aa})、最大主應力功率頻譜密度函數($G_{\sigma_1\sigma_1}$)及麥 西斯應力功率頻譜密度函數($G_{\sigma_{eqv}\sigma_{eqv}}$),由加速度 功率密度頻譜密度函數可計算平均平方根值 (root mean square value, rms value),假設加速度平 均值為零時,則標準差等於平均平方根值 $SD_a = a_{rms}$,方程式如下:

$$a_{\rm rms} = \sqrt{\int_{f_1}^{f_2} G_{aa}(f) df} = SD_a$$
(1)

其中, f_1 、 f_2 為頻率範圍之上下限,同時,已 知加速度平均值為零時,rms 值等於標準差(SD_a) 由式(1)也可求得PCB之應力 rms(σ_{rms})及應力標 準差(SD_a)。

圖 3 為高斯分佈圖假設隨機激振過程為常 態分佈之機率分佈,在一個標準差範圍內,具有 68.3%之數值,而兩個標準差則具有 95.4%之數 值,三個標準差具有 99.7%之數值,故 $SD_{\sigma_{max}} = 3SD_a \times SD_{\sigma_{min}} = -3SD_a$,而應力振幅 σ_a 及 平均應力 σ_m 如下式:

$$\sigma_a = \frac{\sigma_{\max} - \sigma_{\min}}{2} = 3SD_a = 3\sigma_{rms}$$
(2)

$$\sigma_m = \frac{\sigma_{\max} + \sigma_{\min}}{2} = 0 \tag{3}$$

經由上式可得知應力振幅 σ_a 為+ $3SD_a$ 、平均應力 σ_m 值為零。

圖 4 為 Goodman 疲勞分析示意圖,縱軸為應 力振幅σ_a, 橫軸為平均應力σ_m, S_e 為材料之疲 勞極限, S_{ut} 為材料之極限強度,由式(2)可知, 3 倍標準差為應力振幅,因此應力振幅小於疲勞 極限範圍則為無破壞,反之大於疲勞極限範圍則 會產生破壞。本文首先由實驗量測及有限元素分 析求得知加速度功率頻譜密度函數(G_{aa})及由式 (1)推算求得之加速度平方平均根值(a_{rms})進行 比較確認,確認頻譜響應預測分析之可靠性,進 行以 FEA 觀察 PCB 各組件包括 PCB、錫球、基 板、晶片及封膠層等部位之應力響應,並以 Goodman 圖探討其疲勞破壞評估。

3. 具封裝體印刷電路板之精細有限元素模型

本文應用 Wang et al.[10]驗證成功之有限元 素模型進行頻譜響應預測分析,針對 PCB 無加熱 片及 PCB 貼附加熱片、受 75℃熱效應及受 125℃ 熱效應之有限元素模型進行概述。

3.1 無加熱片之印刷電路板

圖 5(a)為模擬固定邊界之 PCB 有限元素模型,圖 5(b)為 PCB 貼附加熱片有限元素模型,PCB 在實際鎖固情況於有限元素模型建構中,以彈簧

元素在對應鎖固區域進行模擬,經由模型驗證[10] 所得之最佳化彈簧元素 K 值為 9.7×10⁹(N/m),加 熱片與銅片採一體式建構,整體架構由上至下可 分為銅片、封膠、晶片、基板、錫球及電路板, 電路板與基板假設為正向性材料其餘則為等向 性材料,模型建構說明如下:

- 元素選用:整體模型皆使用線性立方體元素 (SOLID45)建構,並以三維質量元素 (MASS21)模擬加速度計質量效應,而螺絲鎖 固則以彈簧元素(COMBIN14)模擬。
- 元素分割:模型分割使用 mapped mesh 方式 將印刷電路板模型分割為 195388 個元素, 231034 個節點;印刷電路板貼附銅片模型則 分割為 262940 個元素, 306630 個節點。
- 位移限制:以彈簧元素(COMBIN14)模擬實 際螺絲鎖固處。
- 4. 負荷條件:頻譜響應分析在對應螺絲鎖固處 設定如圖1 E-Level 之加速度及 PSD 為基座 激振輸入條件,而只考慮垂直響應,故只設 定 Z 方向之基座激振輸入來進行頻譜響應分 析。

3.2 有加熱片之印刷電路板

具熱效應 PCB 有限元素模型整體建構方式 如圖 5(b), PCB 貼附加熱片,本文探討無熱效應 及設定加熱片溫度為 75℃及 125℃,在不考慮熱 負荷隨時間變化的過程,以結構達到穩定狀態進 行頻譜響應分析。整體模型建構說明如下:

- 元素選用:進行熱傳分析時整體模型皆使用 線性立方體熱傳元素(SOLID70)建構;熱應 力分析時將線性立方體熱傳元素轉換為線性 立方體元素(SOLID45)進行穩態之靜力分 析,並以三維質量元素(MASS21)模擬加速度 計質量效應,而在螺絲鎖固處則以彈簧元素 (COMBIN14)模擬。
- 元素分割: PCB 貼附銅片模型分割為 262940 個元素, 306630 個節點。
- 3. 熱邊界條件及位移限制:實際量測時室溫溫 度為 27℃,故對應實際情況於有限元素分析 中設定 PCB 及銅片表面週界溫度T_∞=27℃, 週界熱對流係數經實驗與理論比對後發現 h_f = 22(W/m²·K)與實際情況相近,於加熱 片整體設定穩態溫度 75℃及 125℃;於熱應 力方析中,以彈簧元素(COMBIN14)模擬實 際螺絲鎖固處。
- 5. 負荷條件:於熱溫度場分析中無需設定任何 負荷條件;於熱應力場分析由溫度場結果內 嵌至靜力分析,但需以熱應力分析結果內嵌 做為振動分析基礎(pre-stress on);頻譜響應 分析在對應螺絲鎖固處設定如圖 1 E-Level

4. 結果與討論

本節對 PCB 在有無貼附加熱片及有無熱效 應狀態下於隨機激振響應分析進行探討,考慮 PCB 具熱效應於隨機激振下可能改變熱對流係 數,故於 PCB 具熱效應受隨機激振後,以紅外線 熱影像儀拍攝 PCB 表面溫度,再藉由加速度計擺 放於不同位置量測求得加速度功率頻譜密度函 數,經由理論分析與實驗響應預測之驗證,可確 認理論頻譜分析之準確性;由於實際進行應力測 試時並無加速度之質量效應,因此於疲勞破壞預 測分析中皆不考慮加速度之質量效應,探討 PCB 各部位:電路板、錫球、基板、晶片及封膠於隨 機激振及熱效應時之應力分佈及應力值,並進行 疲勞破壞預測分析。綜合討論如下:

- 表1為PCB具熱效應於隨機激振下溫度曲線 總表,比對隨機激振與實驗及理論分析之溫 度,可看出整體趨勢相當一致。
- 2. 表 2 為 PCB 加速度 PSD 圖形總表,從表中可 看出 PCB 加速度 PSD 與振動相關特性,由 1、2 號量測點位置對應表 3 之振型圖,便可 發現加速度 PSD 第一及第三個峰值相當明 顯,再對應 ODS 中第一及第三個振型則為其 位移最大處。
- 3. 表 4 為 PCB 加速度計 rms 總表,由表中可以 看出理論與實驗 rms 有部分差距,並從 PCB 貼附加熱片及具熱效應之 rms 值,可發現與 PCB 之 rms 值比對皆有偏低趨勢,整體來說 其 rms 趨勢對應算相當一致。
- 4.表5為電路板應力rms及應力總表,從表中 可得知當PCB於四種不同狀態下,中央靠近 封裝體應力值皆遠小於螺絲鎖固處,故可推 斷PCB產生疲勞破壞時,對電路板而言最容 易破壞位置為螺絲鎖固處;比較PCB於四種 不同狀態下之應力範圍,得知當電路板具熱 效應時螺絲鎖固區域之應力範圍呈現遞減趨 勢,由PCB具熱效應實驗中自然頻率相對降

低,推估當結構受熱效應後剛性降低,故其 應力範圍變呈現降低趨勢。

- 5. 表 6 為錫球應力 rms 及應力總表,從表中可 發現當 PCB 於四種不同狀態下,錫球外圍中 間部位之節點應力值皆小於四個角落錫球應 力值,故可推斷當 PCB 產生疲勞破壞時,對 錫球而言最容易破壞位置為錫球角落區域與 基板接合處;由表中錫球應力範圍比較,可 得知當 PCB 具熱效應時錫球整體應力值皆逐 漸提升,顯示 PCB 具熱效應後錫球應力相對 升高,故 PCB 產生疲勞破壞過程中,錫球受 熱效應影響需列入疲勞破壞考慮之因素。
- 6.表7為基板應力rms及應力總表,從表中可 得知當PCB於四種不同狀態下,基板中央接 近下緣處應力值皆遠小於基板與錫球角落接 合處,故可推斷PCB產生疲勞破壞時,對基 板而言最容易破壞位置為與錫球角落接合 處。由表中基板應力範圍比較,可發現基板 於隨機激振及125℃熱效應耦合試驗下於基 板背面與錫球接合處產生最大主應力範圍 σ₁=±894.53(KPa),故可確認當PCB產生具 熱效應之疲勞破壞時最先由此處開始破壞, 基板受熱效應之應力亦為未來研究參考。
- 7.表8為晶片應力rms及應力總表,從表中可得知當PCB於四種不同狀態下晶片應力值呈現些微上升現象。從表中晶片應力值及其應力分佈區域,可推斷PCB產生疲勞破壞時,對晶片而言最容易破壞位置為晶片四個角落處。
- 8.表9封膠應力rms及應力總表,從表中可得知當PCB於四種不同狀態下封膠應力值呈現些微上升現象。從表中封膠應力值及其應力分佈區域,可推斷PCB產生疲勞破壞時,對封膠而言最容易破壞位置為其反面接近晶片四個角落區域。

表1PCB 具熱效應於隨機激振下之溫度曲線表

表 2 PCB 加速度 PSD 總表 量測 PCB貼附加熱片 PCB無貼附加熱片 位置 1 2 3 4 5 量測 PCB具75℃熱效應 PCB具125℃熱效應 位置 1 M 2 3 4

表 3 PCB 於固定邊界狀態下簡諧激振時之操 作變形振型(ODS)圖

(a) PCB 無貼附加熱片					
頻率(Hz)	191.65	298.89	465.65		
模態特性	(1,1)	(1, 2)	(2,1)		
Z方向位 移變形圖					

(b) PCB 貼附加熱片

頻率(Hz)	169.71	291.67	455.76
模態特性	(1,1)	(1,2)	(2,1)
Z方向位 移變形圖			

(c) PCB 具 75℃ 熱效應

	() / /	- 1	
頻率(Hz)	158.47	277.56	441.73
模態特性	(1,1)	(1,2)	(2,1)
Z方向位 移變形圖			

(d) PCB 具 125℃ 熱效應

頻率(Hz)	141.81	261.53	408.32
模態特性	(1,1)	(1,2)	(2,1)
Z方向位 移變形圖			

表 4 PCB 加速度 rms 總表

PCB無貼附加熱片			PCB貼附	计加热片
量測	實驗	FEA	實驗	FEA
位置	rms(g)		rms(g)	
1	4.18	3.22	3.41	3.56
2	4.18	3.25	3.35	3.56
3	6.55	4.25	4.65	4.37
4	6.83	4.27	5.17	4.37
5	4.74	3.62	3.87	3.74

2010 Taiwan ANSYS Conference

PCB具75℃熱效應			PCB具125℃熱效應	
量測	實驗	FEA	實驗	FEA
位置	rms(g)		rms(g)	
1	2.56	1.29	2.86	1.14
2	2.55	1.29	3.23	1.14
3	3.25	3.77	2.14	3.63
4	2.81	3.77	2.02	4.17
5	2.64	3.97	1.57	4.12

表5 電路板應力 rms 及應力總表 (a) PCB 無貼附加熱片

	. ,		
預測	回心	應力rms	應力範圍
位置	画心	KI	Pa
		$\sigma_{1,\mathrm{rms}} = 2.24$	$\sigma_1 = \pm 6.72$
		$\sigma_{eqv,rms} = 16.20$	σ_{eqv} = ±48.6
		$\sigma_{1,\rm rms} = 141.26$	$\sigma_1 = \pm 423.78$
		$\sigma_{eqv,\mathrm{rms}} = 52.15$	σ_{eqv} = ±156.45
	1 10 10 100		

(b) PCB 貼附加熱片 確 カrms Τ

	· · ·		
預測	回形	應力rms	應力範圍
位置	回归	KI	Pa
		$\sigma_{1,\mathrm{rms}} = 0.67$	$\sigma_1 = \pm 2.01$
		$\sigma_{eqv,\mathrm{rms}} = 15.22$	σ_{eqv} = ±45.66
		$\sigma_{1,\mathrm{rms}} = 19.75$	$\sigma_1 = \pm 59.25$
\mathbf{O}		$\sigma_{eqv,rms} = 124.46$	σ_{eqv} = ±373.38
	預測 位置	預測 位置	預測 位置 通形 使力rms の の の の の の の の の の の の の

(c) PCB 具 75℃ 熱效應 應力rms 預測 應力範圍 圖形 位置 KPa $\sigma_{1,\mathrm{rms}}$ = 4.69 $\sigma_1 = \pm 14.08$ $\sigma_{eqv,rms} = 38.17$ $\sigma_{eqv}=\pm 114.50$ $\sigma_{1,\mathrm{rms}} = 4.94$ $\sigma_1 = \pm 14.82$ $\sigma_{eqv,rms} = 94.01$ $\sigma_{eqv}=\pm 282.04$

(d) PCB 具 125℃ 熱效應

預測	图形	應力rms	應力範圍	
位置	回加	KPa		
		$\sigma_{1,\text{rms}} = 6.27$ $\sigma_{eqv,\text{rms}} = 53.25$	$\sigma_1 = \pm 18.80$ $\sigma_{eqv} = \pm 159.76$	
0		$\sigma_{1,\rm rms} = 35.57$ $\sigma_{eqv,\rm rms} = 86.84$	$\sigma_1 = \pm 106.71$ $\sigma_{eqv} = \pm 260.53$	

論文順序:15

表6 錫球應力 rms 及應力總表 (a)PCB 無貼附加熱片

預測	圖形	應力rms	應力範圍
位置		ŀ	KPa
O		$\sigma_{1,\text{rms}} = 10.46$ $\sigma_{eqv,\text{rms}} = 6.24$	$\sigma_1 = \pm 31.39$ $\sigma_{eqv} = \pm 18.73$
		$\sigma_{1,\text{rms}} = 131.41$ $\sigma_{eqv,\text{rms}} = 56$	$\sigma_1 = \pm 394.23$ $\sigma_{eqv} = \pm 168$

(b)PCB 貼附加熱片

預測	图形	應力rms	應力範圍
位置	國心]	KPa
0		$\sigma_{1,\rm rms} = 6.03$	$\sigma_1 = \pm 18.09$
y		$\sigma_{eqv,\mathrm{rms}} = 8.45$	$\sigma_{eqv} = \pm 25.35$
		$\sigma_{1,\rm rms} = 215.86$	$\sigma_1 = \pm 647.58$
		$\sigma_{eqv,rms} = 84.85$	$\sigma_{eqv} = \pm 254.55$

(c)PCB 具 75℃ 熱效應

預測	图形	應力rms	應力範圍
位置	國加	K	Pa
O		$\sigma_{1,\rm rms} = 26.12$ $\sigma_{eqv,\rm rms} = 30.72$	$\sigma_1 = \pm 78.35$ $\sigma_{eqv} = \pm 92.16$
		$\sigma_{1,\rm rms} = 200.49$ $\sigma_{eqv,\rm rms} = 192.19$	$\sigma_1 = \pm 601.47$ $\sigma_{eqv} = \pm 576.57$

(d)PCB 具 125℃ 熱效應

預測	图形	應力rms	應力範圍
位置	國乃	K	Pa
		$\sigma_{1,\rm rms} = 58.49$	$\sigma_1 = \pm 175.48$
Θ		$\sigma_{eqv,rms} = 57.40$	$\sigma_{eqv} = \pm 172.19$
		$\sigma_{1,\rm rms} = 153.40$	$\sigma_1 = \pm 460.21$
		$\sigma_{eqv,\mathrm{rms}} = 245.07$	$\sigma_{eqv} = \pm 735.22$

表7基板應力 rms 及應力總表 (a) PCB 無貼附加熱片

預測	图形	應力rms	應力範圍	
位置	回加	KI	Pa	
	A Construction of the second s	$\sigma_{1,\mathrm{rms}}$ = 1.69	$\sigma_1 = \pm 5.07$	
		$\sigma_{eqv,\mathrm{rms}} = 2.19$	$\sigma_{eqv} = \pm 6.57$	
		$\sigma_{1,\mathrm{rms}} = 78.22$	$\sigma_1 = \pm 234.66$	
		$\sigma_{eqv,\mathrm{rms}} = 39.55$	$\sigma_{eqv} = \pm 118.65$	

(b) PCB 貼附加熱片				
預測	图形	應力rms	應力範圍	
位置	回兀	КРа		
\bigcirc		$\sigma_{1,\rm rms} = 0.33$	$\sigma_1 = \pm 0.98$	
		$\sigma_{eqv,\mathrm{rms}} = 2.31$	$\sigma_{eqv} = \pm 6.92$	
\square		$\sigma_{1,\rm rms} = 118.20$	$\sigma_1 = \pm 354.59$	
		$\sigma_{eqv,\mathrm{rms}} = 56.55$	$\sigma_{eqv} = \pm 169.65$	

(c) PCB 具 75℃ 熱效應

預測	图形	應力rms	應力範圍
位置	回加	KP	a
		$\sigma_{1,\rm rms} = 0.2$	$\sigma_1 = \pm 0.61$
		$\sigma_{eqv,rms} = 3.04$	$\sigma_{eqv} = \pm 9.12$
1		$\sigma_{1,\rm rms} = 118.23$	$\sigma_1 = \pm 354.68$
		$\sigma_{eqv,rms} = 56.56$	$\sigma_{eqv} = \pm 169.68$

(d) PCB 具 125℃ 熱效應

預測	图形	應力rms	應力範圍
位置	回加	KF	Pa
		$\sigma_{1,\mathrm{rms}} = 0.79$	$\sigma_1 = \pm 2.37$
		$\sigma_{eqv,\mathrm{rms}} = 3.45$	$\sigma_{eqv} = \pm 10.34$
1		$\sigma_{1,\mathrm{rms}} = 298.18$	$\sigma_1 = \pm 894.53$
		$\sigma_{eqv,rms} = 146.28$	$\sigma_{eqv} = \pm 438.84$

表 8 晶片應力 rms 及應力總表 (a) PCB 無貼附加熱片

	()			
預測	回心	應力rms	應力範圍	
位置	<u></u>	KPa		
\bigcirc		$\sigma_{1,\rm rms} = 13.23$	$\sigma_1 = \pm 39.69$	
		$\sigma_{eqv,\mathrm{rms}} = 13.79$	$\sigma_{eqv} = \pm 41.37$	

(b)]	PCB	貼	附	加	熱	片
-------	-----	---	---	---	---	---

預測	回心	應力rms	應力範圍
位置	國 712	KF	Pa
		$\sigma_{1,\text{rms}} = 0.94$ $\sigma_{eqv,\text{rms}} = 1.38$	$\sigma_1 = \pm 2.82$ $\sigma_{eqv} = \pm 4.13$

(c) PCB 具 75℃ 熱效應

預測	图形	應力rms	應力範圍
位置	國加	K	Pa

預測	圖形	應力rms	應力範圍
位置		KI	Pa
	0 2010/2010/00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\sigma_{1.rms} = 7.31$	$\sigma_1 = \pm 21.92$

 $\sigma_{eqv,rms} = 6.52$

(d) PCB 具 125℃ 熱效應

預測	圖形	應力rms	應力範圍
位置		KPa	
		$\sigma_{1,\mathrm{rms}} = 16.34$	$\sigma_1 = \pm 49.01$
		$\sigma_{eqv,rms} = 14.41$	$\sigma_{eqv} = \pm 43.24$

表 9 封膠應力 rms 及應力總表 (a) PCB 無貼附加熱片

	()	,	
預測	图形	應力rms	應力範圍
位置	回 712	КРа	
9		$\sigma_{1,\text{rms}} = 13.06$ $\sigma_{eqv,\text{rms}} = 13.17$	$\sigma_1 = \pm 39.18$ $\sigma_{eqv} = \pm 39.51$

(b)PCB 貼附加熱片

預測	图形	應力rms	應力範圍
位置	國 715	KPa	
		$\sigma_{1,\rm rms} = 15.66$ $\sigma_{eqv,\rm rms} = 12.88$	$\sigma_1 = \pm 46.99$ $\sigma_{eqv} = \pm 38.63$

(c) PCB 具 75℃ 熱效應

預測	图形	應力rms	應力範圍
位置	國 715	KPa	
		$\sigma_{1,\text{rms}} = 11.88$ $\sigma_{eqv,\text{rms}} = 10.06$	$\sigma_1 = \pm 35.64$ $\sigma_{eqv} = \pm 30.18$

(d) PCB 具 125℃ 熱效應

預測	圖形	應力rms	應力範圍
位置	國加	KPa	
01		$\sigma_{1,\rm rms} = 17.87$ $\sigma_{eqv,\rm rms} = 18.47$	$\sigma_1 = \pm 53.61$ $\sigma_{eqv} = \pm 55.42$

5.結論

本文利用經 EMA 及 FEA 模型驗證成功之有 限元素模型,依循 JEDEC 制定振動試驗規範進 行頻譜響應分析,並預測印刷電路板在具熱效應 與振動測試耦合狀態下之疲勞破壞。本文綜合結 論如下:

 透過紅外線熱影像儀拍攝 PCB 具熱效應於 隨機激振下溫度,經由比對隨機激振下與實 驗及理論分析之溫度,其溫度分佈趨勢相當

論文順序:15

 $\sigma_{eqv}=\pm 19.56$

一致,確認此熱邊界進行 PCB 具熱效應隨機 激振響應預測分析是有其正確性的。

- 2. 利用加速度 PSD 圖及 rms 值進行實驗與理論 頻譜分析比對,可發現其值於各位置皆有誤 差但整體比對良好,而在 PSD 圖形中 PCB 具熱效應峰值自然頻率與實驗皆有 10Hz 左 右誤差,推估是因 PCB 於反覆加熱情況下導 致結構特性改變,又或者是因封裝體貼附加 熱片改變其結構幾何特性,未來可改善 PCB 加熱方式,經由加速度 rms 值及 PSD 圖比對 後,驗證理論頻譜分析可合理代表實驗隨機 激振狀態。
- 3. 對於 PCB 於四種狀態下之疲勞破壞預測分析,可觀察出 PCB 於隨機激振及熱效應耦合試驗中,關鍵區域為電路板、錫球及基板,由各細部模型在四種不同狀態下之應力值可推估,PCB 受此耦合試驗產生疲勞破壞時,最先由基板產生破壞其次則為錫球靠近角落處。

6.参考文獻

- [1]王栢村,林鴻裕,李英志,2005,「環境振動 試驗用印刷電路板之模型驗證」,中華民國力 學學會第二十九屆全國力學會議,新竹,論 文編號:H013-1。
- [2] 王栢村,陶致均,賴逸少,葉祖麟,李英志, 2008,「上級封裝體於自由邊界下之模型驗 證」,第十六屆中華民國振動與噪音工程學術 研討會,台北,論文編號:C-6。
- [3] 王栢村,許富翔,陶致均,賴逸少,葉昶麟, 李英志,2008,「不同封裝體數量印刷電路板 之振動特性與響應預測模擬比較分析」,第十 六屆中華民國振動與噪音工程學術研討會, 台北,論文編號:C-5。
- [4] 王栢村,陶致均,李沛緯,賴逸少,葉昶 麟,李英志,2007,「印刷電路板模型驗 證與響應預測之重複性探討」,2007 ANSYS/Fluent 年度應用研討會與用戶聯 誼大會(第16屆),桃園,第15-30頁。
- [5] Yang, Q. J., Pang, H. L. J., Wang, Z. P., Lim, G. H., Yap, F. F., and Lin, R. M., 2000, "Vibration Reliability Characterization of PBGA Assemblies," *Microelectronics Reliability*, Vol. 40, pp. 1097-1107.
- [6] Wong, T. E., Reed, B. A., Cohen, H. M., and Chu, D.W., 1999, "Development of BGA Solder Joint Vibration Fatigue Life Prediction Model," *Electronic Components and Technology Conference*, pp. 149-154.
- [7] Perkins, A., and Sitaraman, S.K., 2004, "Vibration – Induced Solder Joint Failure of a

Ceramic Column Grid Array (CCGA) package," *Electronic Components and Technology*, Vol. 2, pp. 1271-1278.

- [8] 黃東鴻,李長祺,賴逸少,王靜君,2007,「疊 合封裝結構受功率與溫度耦合循環測試之熱 傳特性與疲勞可靠度評估」,簡訊專文,第四 十二期,第4-8頁。
- [9] 黃東鴻,李長祺,王靜君,賴逸少,2006,「堆 疊晶片尺寸封裝受功率與溫度耦合循環測試 的熱傳特性與疲勞可靠度表現」,中華民國力 學學會第三十屆全國力學會議,彰化,第8-10 頁。
- [10] Wang, B. T., Liang, X. W., Hsu, F. X., Lai, Y. S., Yeh, C. L., Lee, Y. C., 2010, "A Refined Finite Element Model Verification for IC Packaged PCB with Thermal Effects," *IMPACT2010*, Taipei, Paper No. : TW159-1.
- [11] JEDEC (2001) JESD22-B103-B : Vibration, Vibration Frequency. JEDEC Solid State Technology Association.
- [12] http://zh.wikipedia.org/w/index.php?title=Imag e:Standard_deviation_diagram.svg&variant=zh - t w , 2 0 0 8 / 6 / 1 7.