

應用MATLAB軟體於振動相關問題之分析

王栢村

國立屏東科技大學

機械工程系暨研究所

TEL: (08)770-3202轉7017

FAX: (08)774-0142

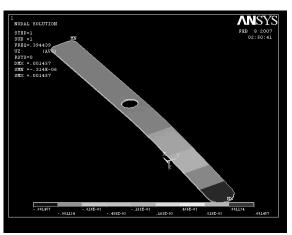
E-mail: wangbt@mail.npust.edu.tw

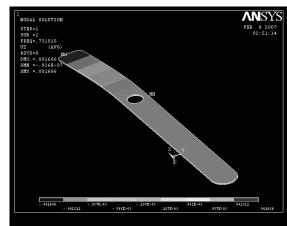
www: http://140.127.6.133/lab

摘要

- ●本報告介紹本實驗室應用MATLAB軟體於振動分析的教學 現況與研究成果,以期與產學各界分享應用MATLAB軟體 之經驗。
- ●首先, 簡介與工程相關的振動問題與振動分析內涵, 並概略性回顧振動分析相關軟體工具之特性,
- ●其次,分別以MATLAB軟體應用在振動教學與振動相關研究兩個面向,
- ●介紹本實驗室所建立的分析案例,各案例均簡要
 - ■說明其目的與背景動機、
 - ■MATLAB軟體的角色與助益、
 - 以及主要的成果與應用。
- ●透過展示的分析案例,可以了解MATLAB軟體功能,以及 提供產學人士在應用MATLAB軟體於振動教學與研究的參 考。

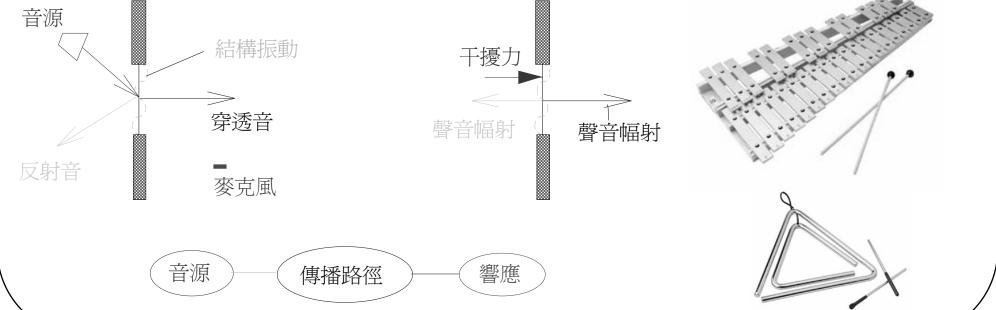
報告大綱


- 1.前言
- 2. 振動分析簡介
- 3.案例探討
 - 3-1 應用MATLAB於離散系統之振動分析模組開發
 - 3-2聲音模擬產生器與頻譜分析
 - 3-3 應用MATLAB GUI在聲音及振動線性頻譜轉換為1/3八音頻帶頻譜 與dB及dBA計算
 - 3-4應用MATLAB GUI 在基於振動方法之破壞檢測
 - 3-5應用MATLAB於衝擊試驗機之衝擊座分析
 - 3-6應用MATLAB GUI 在模型驗證分析模組整合
 - 3-7應用MATLAB GUI 於高爾夫球具振動品質指標分析模組
 - 3-8應用MATLAB GUI 在球頭與球具聲音與振動關聯性分析模組
 - 3-9應用MATLAB GUI 於球具室外聲音量測及預測分析模組
 - 3-10應用MATLAB GUI於風扇噪音量測模組之開發與驗證評估
 - 3-11應用MATLAB GUI 在刀具頻率響應函數模組開發
 - 3-12應用MATLAB GUI 於MAFVRO之預測分析
- 4.結語


豆

1.前言

- ●振動分析之重要性
 - ■舉凡會動的機器、 設備、產品都會有 「振動」的現象
 - ■就連不動的建築物 都會受到地震的影 響
 - ■「振動」可以說是 無所不在。



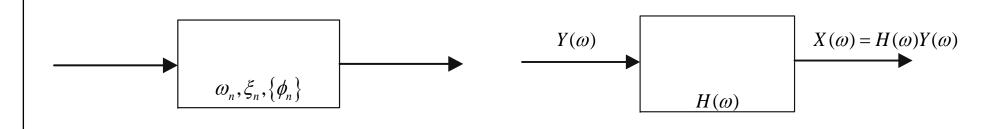
1.前言

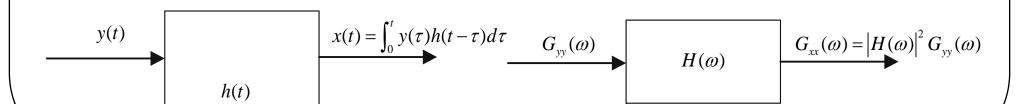
- ●聲音之產生與傳播
 - ■來自流場流動所引發之介質波動
 - ■來自結構振動所引發之介質波動

1.前言

- ●振動與聲音分析之軟體工具
 - ■ANSYS軟體以有限元素分析進行工程問題中的振動分析,但其於有限元素法理論艱澀,其操作較不易上手。
 - ■FORTRAN振動分析軟體操作容易且執行速度快但缺點:
 - ▲ 在其顯示圖形的部份需以另一套軟體擴充其輸出功能,視窗來觀看,較難以做圖形與數值的比對。
 - ▲ 撰寫分析方程式時,需寫成各別方程式再來整合軟體,造成軟體擴充不易
- ●本文介紹MATLAB於振動與聲音分析之應用

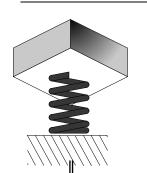
2. 振動分析簡介


- 振動問題之分析目標有四種:
 - a.模態分析(modal analysis):
 - ▲ 旨在求得系統之模態參數,包括:
 - igoplus 自然頻率 (ω_n) 、模態阻尼 (ξ_n) 、模態振型 (ϕ_n)
 - ▲ 也就是透過分析了解系統之特性
 - b. 簡諧響應分析(harmonic response analysis):
 - ▲ 也在了解系統之特性
 - \triangle 乃在求得系統之輸出與輸入間之頻率響應函數 $H(\omega) = \frac{X(\omega)}{F(\omega)}$
 - c. 暫態響應分析(transient response analysis):
 - ▲ 在已知系統特性以及輸入條件下,求解系統輸出之時間域響應
 - d.頻譜響應分析(spectrum response analysis):
 - ▲ 通常適用在隨機激振狀況
 - ▲ 在已知系統特性以及輸入條件之功率頻譜密度函數
 - ▲ 求系統輸出之頻率域響應,即輸出之功率頻譜密度函數

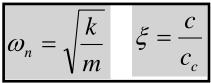


2. Solution of Vibration System (振動系統分析)

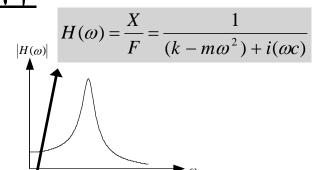
- ●3.5.1 Modal Analysis(模態分析)
- 3.5.2 Harmonic Response Analysis(簡諧響應分析)
- ●3.5.3 Transient Response Analysis(暫態響應分析)
- ●3.5.4 Spectrum Response Analysis (頻譜響應分析)

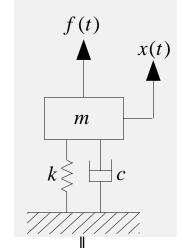

8

1 Model Analysis



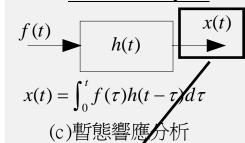
單自由度系統振動分析


Real structure

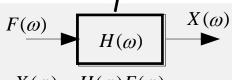

外力激振

Mathematical model

$$m\ddot{x} + c\dot{x} + kx = f(t)$$

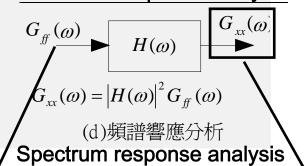


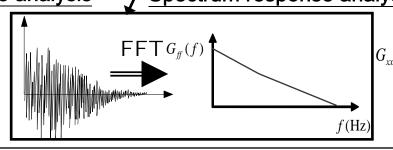
系統物理參數:m, c, k

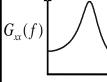

模態參數: $\omega_n, \xi_n, \{\phi_n\}$

(a)模態分析

Modal analysis


Transient response analysis



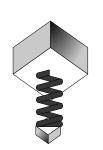

$$X(\omega) = H(\omega)F(\omega)$$

(b)簡諧響應分析

Harmonic response analysis

 $k + i\omega c$

 $y(t) = Ye^{i\omega t}$

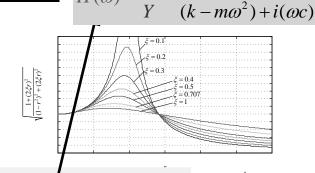


m

Real structure

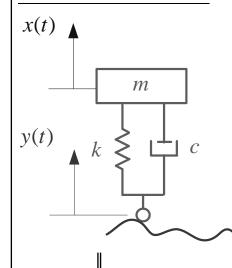
基座激振

輸出



$$\omega_n = \sqrt{\frac{k}{m}} \qquad \xi = \frac{c}{c_c}$$

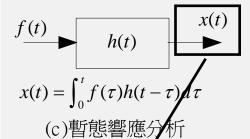
輸入


$$c_c = 2\sqrt{mk} = 2m\omega_n$$

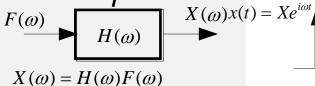
自由度系統振動分析

 $H(\omega) = \frac{X}{}$

Mathematical model

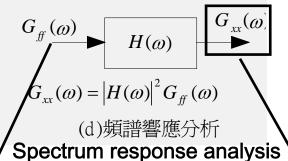

系統物理參數:m, c, k

模態參數: $\omega_{\scriptscriptstyle n},\xi_{\scriptscriptstyle n},\{\!\phi_{\scriptscriptstyle n}\!\}$

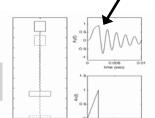

(a)模態分析

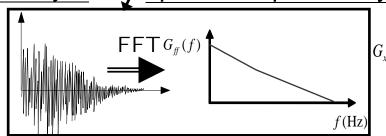
系統

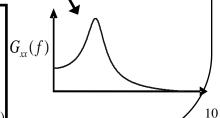
Modal analysis



Transient response analysis

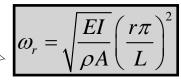

(b)簡諧響應分析

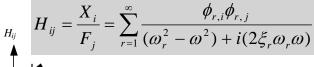

Harmonic response analysis

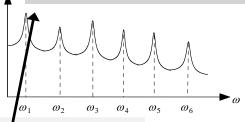


System equation

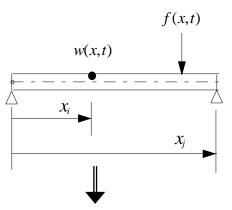
$$m\ddot{x} + c\dot{x} + kx = c\dot{y} + ky$$

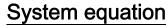





Real structure

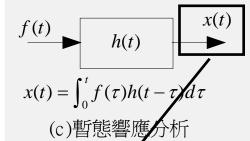
2-2 簡支樑振動分析



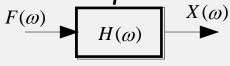


Mathematical model

$$\rho A \frac{\partial^2 w(x,t)}{\partial t^2} + EI \frac{\partial^4 w}{\partial x^4} = f(x,t)$$

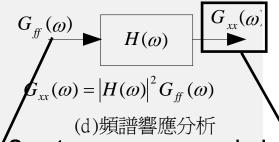


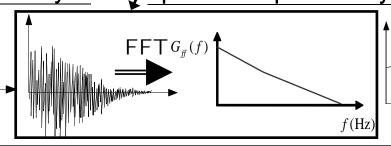
系統物理參數:m, c, k


模態參數: $\omega_n, \xi_n, \{\phi_n\}$

(a)模態分析

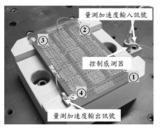
Modal analysis

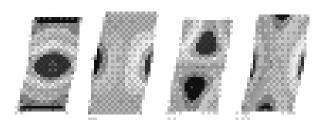

Transient response analysis


$X(\omega) = H(\omega)F(\omega)$

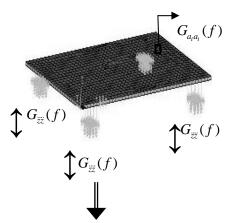
(b)簡諧響應分析

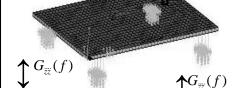
Harmonic response analysis

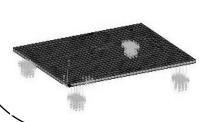



Spectrum response analysis

Real structure

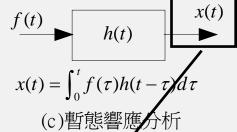




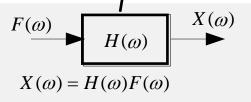


Mathematical model

Finite element model

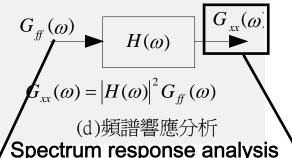


系統物理參數:m, c, k

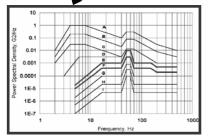

模態參數: $\omega_n, \xi_n, \{\phi_n\}$

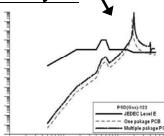
(a)模態分析

Modal analysis



Transient response analysis




(b)簡諧響應分析

Harmonic response analysis

Spectrum response analysis

显

3.案例探討

- ■3-1 應用MATLAB於離散系統之振動分析模組開發
- ■3-2聲音模擬產生器與頻譜分析
- ■3-4應用MATLAB GUI 在基於振動方法之破壞檢測
- ■3-5應用MATLAB於衝擊試驗機之衝擊座分析
- ■3-6應用MATLAB GUI 在模型驗證分析模組整合
- ■3-7應用MATLAB GUI 於高爾夫球具振動品質指標分析模組
- ■3-8應用MATLAB GUI 在球頭與球具聲音與振動關聯性分析模組
- ■3-9應用MATLAB GUI 於球具室外聲音量測及預測分析模組
- ■3-10應用MATLAB GUI於風扇噪音量測模組之開發與驗證評估
- ■3-11應用MATLAB GUI 在刀具頻率響應函數模組開發
- ■3-12應用MATLAB GUI 於MAFVRO之預測分析

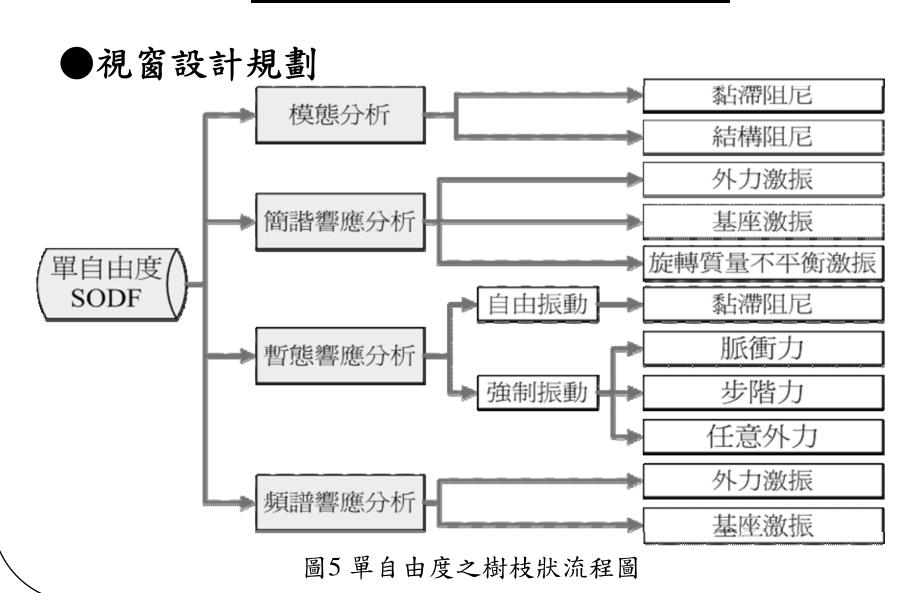
30

3-1 應用MATLAB於離散系統之振動分析模組 開發

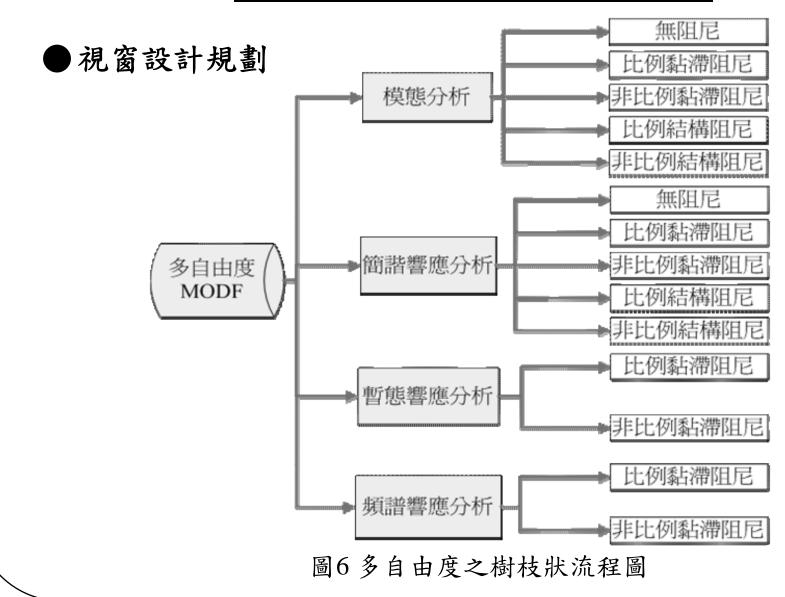
- 本專題主要是運用MATLAB軟體開發包含單自由度與多自由度之離散 系統之振動分析模組,可作為振動教學軟體及工程實務應用。
- 本文介紹軟體功能包含典型之振動四項分析:
 - ■模態分析
 - ■簡諧響應分析
 - ■暫態響應分析
 - ■頻譜響應分析
 - ▲ 也分別考慮不同阻尼形式,包括:無阻尼、黏滯阻尼及結構阻 尼三種形式,並考慮比例與非比例阻尼狀態。
- 針對不同類型的分析,本軟體設計簡單易懂且便於操作的介面,使得參數輸入/輸出及圖形繪製更具有親和性的人機介面。
- 本文並附有各種分析範例與驗證,以確認本軟體之正確性。

3-1-1背景動機

- ●振動學是大學或研究所修讀課程,但其缺點如下;
 - ■學習過程中振動現象、理論公式複雜造成計算之困擾。
 - ■所求出數值不知如何驗證,造成老師教學不易或學生學習不佳。
 - 利用MATLAB所開發此套教學軟體可解決問題,
 - ▲讓學習者更加容易學習上手操做
 - ▲使用對話視窗更加人性化。



3-1-2單自由度系統—模態分析


3-1-3程式發展流程

3-1-3程式發展流程

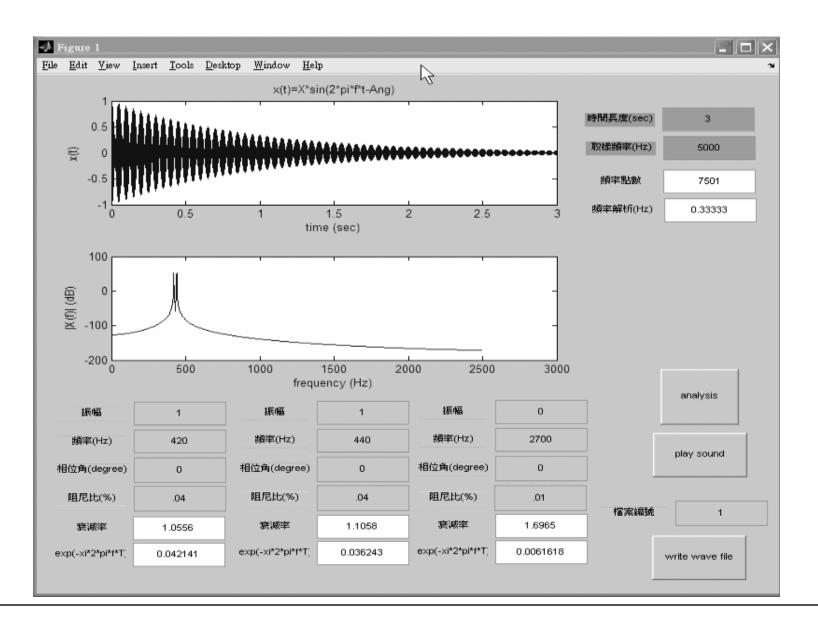
3-1-4實例應用與範例

- SDOF範例
 - 模態之黏滯阻尼
 - 模態之結構阻尼
 - 簡諧之基座激振
 - ■簡諧之外力激振
 - ■簡諧之質量旋轉不平衡
 - 暫態之黏滯阻尼
 - 暫態之步階力
 - **暫態之任意外力**
 - 頻譜之基座激振
 - ■頻譜之外力激振

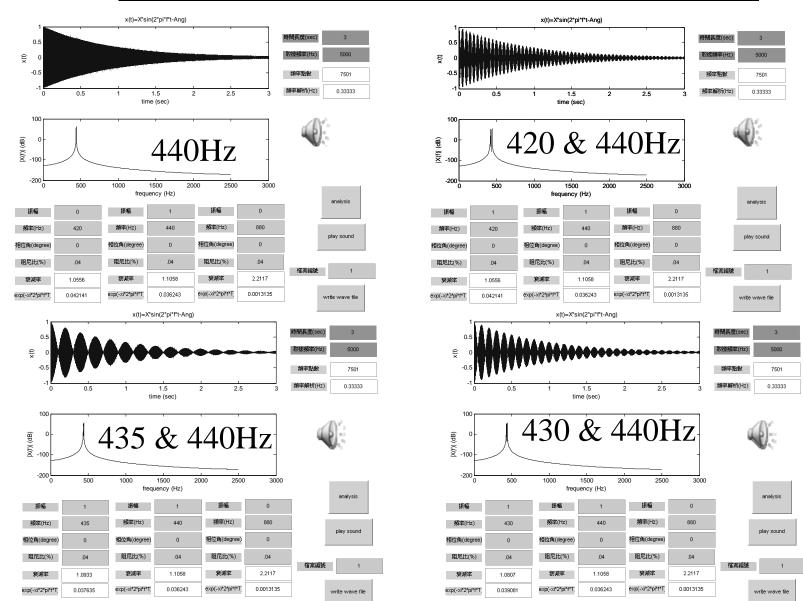
- MDOF範例
 - 模態之無阻尼
 - ■模態之比例黏滯阻尼
 - 模態之非比例黏滯阻尼
 - 模態之比例結構阻尼
 - ■模態之非比例結構阻尼
 - 簡諧之無阻尼
 - 簡諧之比例黏滯阻尼
 - 簡諧之非比例黏滯阻尼
 - ■簡諧之非比例結構阻尼
 - 頻譜之比例黏滯阻尼

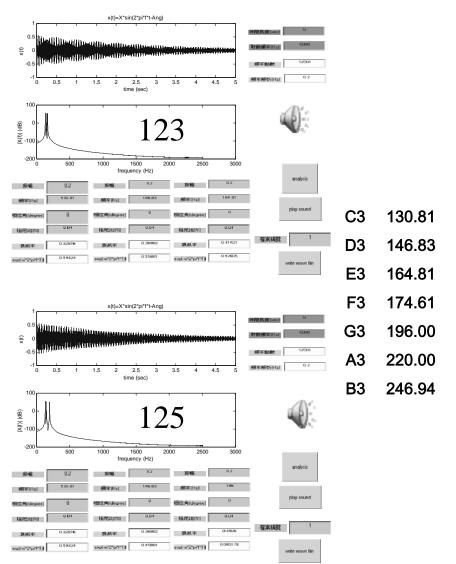
3-1-5結論與建議

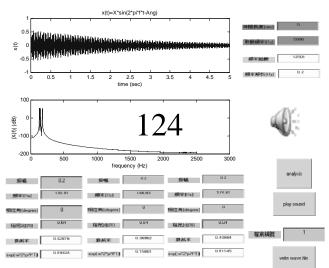
- ●本文所介紹之軟體包含幾項特點如下:
 - ■1.將數值的輸入輸出及圖形的顯示配合操作控制鈕之設計形成分析介面。
 - ■2.藉由此介面,使用者只需輸入參數即可進行四種典型 之振動分析,操作方式簡單易懂。
 - ■3.對於剛接觸振動學的學習者,可輕易地變更輸入參數,獲得不同之輸出,藉此了解在不同輸入參數時,所產生的振動現象之差異性。
 - ■4.有助於解決振動問題,必免掉繁雜的運算過成及數值 運算之正確性。

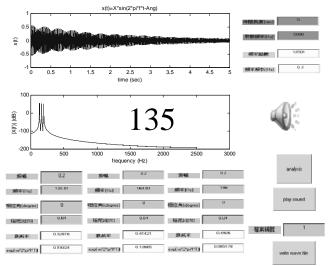

3-2聲音模擬產生器與頻譜分析

- ●功能:
 - ■產生不同頻率之聲音組合
 - ▲ 輸入:聲音頻率、振幅、阻尼比
 - ■即時顯示時間域聲音波形
 - ■即時顯示頻率域聲音頻譜
 - ■播放不同頻率聲音組合之聲音
 - ■儲存聲音wave檔案
- ●目的:
 - ■探討不同頻率組合之聲音特性
- ●應用:
 - ■打擊樂器聲音特性之評估


3-2聲音模擬產生器與頻譜分析


3-2聲音模擬產生器與頻譜分析





<u>Different Tones Combination</u> C3+D3+E3;C3+D3+F3;C3+D3+G3;C3+E3+G3;

3-2聲音模擬產生器與頻譜分析 MATLAB GUI 之效益

- ●GUI人機介面之優點
 - ■參數化設定:
 - ▲可設定不同頻率、振幅、阻尼比
 - ■程式功能:
 - ▲即時顯示時間域聲音波形
 - ▲即時顯示頻率域聲音頻譜
 - ▲播放不同頻率聲音組合之聲音
 - ▲儲存聲音wave檔案
 - 加速分析流程
 - ▲觀察時間域聲音波形、及頻譜特性
 - ▲ 可回撥聲音,應用於結構音響特性之設計

3-3 應用MATLAB GUI 在聲音及振動線性頻譜轉換為1/3八音頻帶頻譜 與dB及dBA計算

王栢村

國立屏東科技大學

機械工程系暨研究所

TEL: (08)770-3202轉7017

FAX: (08)774-0142

E-mail: wangbt@mail.npust.edu.tw

www: http://140.127.6.133/lab

巴士車廂內振動與噪音之檢測評估

- ●本文目的:
 - ■針對不同車型之巴士內振動與噪音進行檢測與評估。
 - ■針對不同車型之巴士進行聲音探討、瞭解噪音源與振動源貢獻度、探討噪音與振動傳播路徑、提出噪音與振動改善策略、進行综合結果比較分析。
 - ■建立巴士車內振動與噪音傳遞之量測規劃,未來可作為巴士車內振動與噪音改善之參考。
- ●未來希望提供製造廠商針對巴士量測的標準分析流程作業,以確切掌控巴士車廂內振動與噪音傳播特性,並將結果回饋至設計層面。

全文概述

主題	不同巴士車廂內振動與噪音整合比較分析				
目的	探討包括不同車型之聲音評估、噪音源探討、噪音路徑評估、				
	噪音改善策略探討以及综合比較分析等五大部分。				
示 意 圖	B-01	B-02	B-03		
		D 02	D -03		
後續	針對3部巴士提出結論與建議				
應用					

- ●分別以不同行車狀況進行量測
 - ■行進(in-running)

▲ 定速: 時速60公里-110公里, 國道3號、88號快速道路。

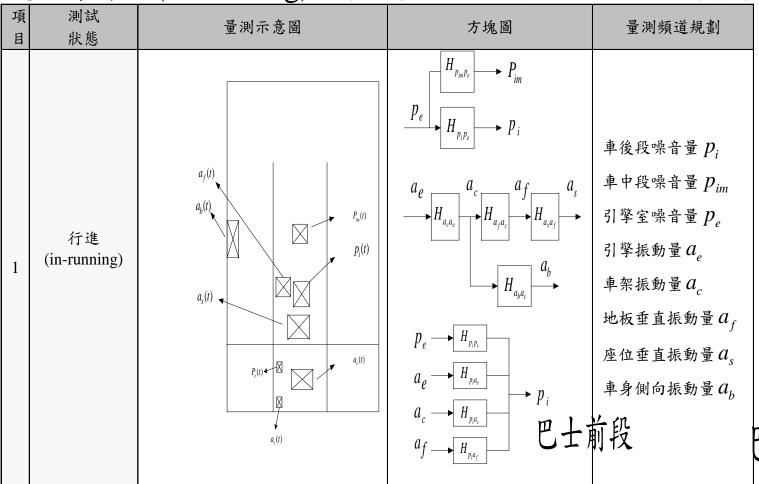
▲上坡:交流道、高雄大坪頂。

▲ 下坡:交流道、高雄大坪頂。

▲ 啟動-加速-100km/hr-油壓煞車-靜止:潮州戰備跑道。

- ■静止(in-statics)
 - ▲正常靜止狀態下,量測0檔位、不同引擎轉速下之噪音量,廠內無噪音干擾區。
 - ▲ 靜止車輪後軸頂高狀態下,量測不同檔位、不同引擎轉速下之噪音量,廠內無噪音干擾區。

不同車型之實驗量測規劃(續)


- ●使用儀器
 - ■SIGLAB頻譜分析儀
 - ▲ 量測頻道包括:
 - ◆ 車後段噪音、引擎室噪音、引擎振動、車外噪音
 - ◆ 車架振動、地板振動、車身振動、座位振動。
 - ■CEL593.C1噪音計
 - ▲ 量測位置:距後座凸起部1公尺,高度1公尺。
 - ◆ 車後段噪音。
 - ▲ 量測位置:距後車蓋1公尺,高度1公尺。
 - ◆車外噪音。

B-02車與B-03車之實驗量測規劃

B-02車與B-03車實驗規劃分為3種狀態,分述如下:

■狀態1為行進(in-running),量測巴士不同位置之振動與噪音量

走道

座椅

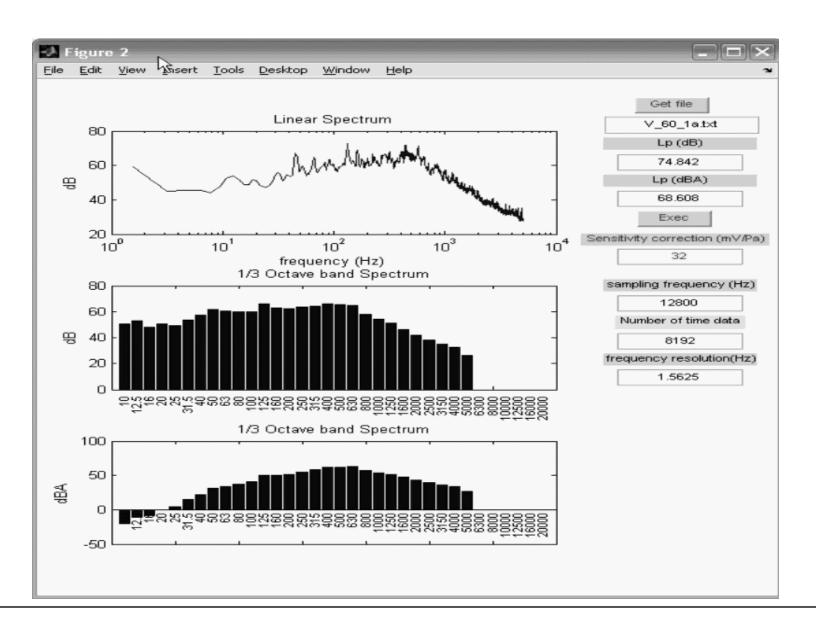
座椅

豆

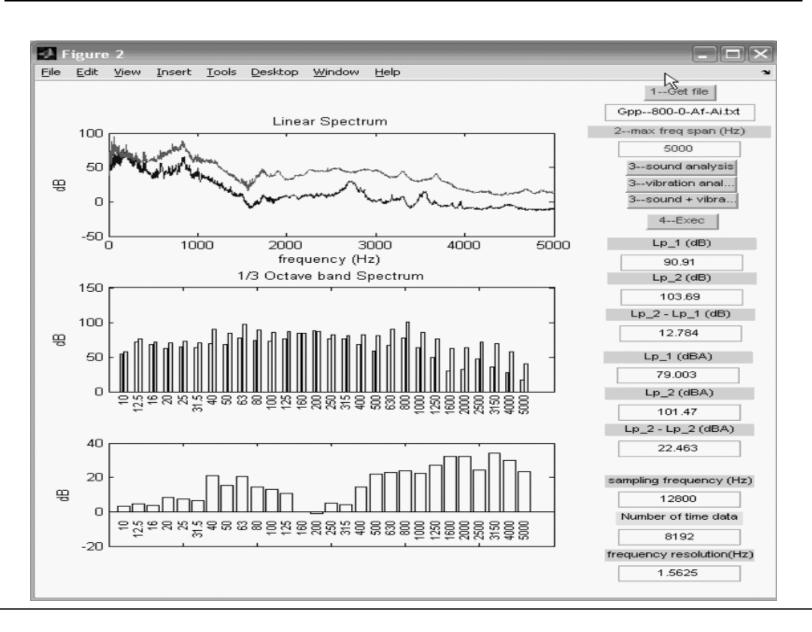
B-02車與B-03車之實驗量測規劃

●B-02車與B-03車實驗規劃分為3種狀態,分述如下:

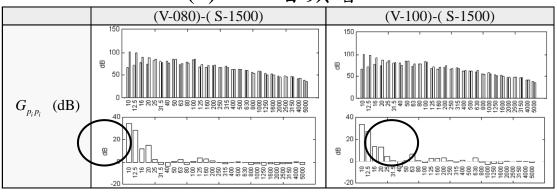
■狀態2為靜止(in-statics),分為正常靜止(A)與靜止車輪後軸頂高(B)2種狀況,量測不同引擎轉速,不同檔位之振動與噪音


量

項目	測試 狀態	量測示意圖	方塊圖	量測頻道規劃
2	静止 (in-statics) A:正常 静止 B:車順高	$a_{s}(t)$ $a_{s}(t)$ $a_{s}(t)$ $a_{s}(t)$ $a_{s}(t)$ $a_{s}(t)$ $a_{s}(t)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	車後段噪音量 P_o 引擎室噪量 a_e 車外擊室大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大


MATLAB GUI for Sound Spectrum Analsysis

MATLAB GUI for Sound Spectrum Analsysis



不同車型之噪音源評估

- ●路面之影響-噪音
 - ■表(a)、(b)為B-01在相同引擎轉速1500rpm下,正常靜止與定速行進之噪音量及1/3八音頻譜比較,目的是在探討路面激振的影響。
 - ▲ 車內噪音量在巴士定速時比靜止增加13-14dB,由八音頻譜可看出主要來自低頻率部分
 - ▲ 因為A加權對低頻率有較大之加權,所以dBA值幾乎不變。 (a)均能音量位準

均能音量	S-1500	V-080	V-100				
	靜止(0)	80km/hr(5)	100km/hr(6)	(V-080)-(S-1500)	(V-100)-(S-1500)		
位準	(1500rpm)	(1500rpm)	(1500rpm)				
$L_{eq,p_i}(dB)$	90.231	104.27	103.41	14.039	13.183		
L_{eq,p_i} (dBA)	70.492	70.379	70.789	-0.11251	0.29691		

(b)1/3八音頻譜

不同車型之噪音路徑測試

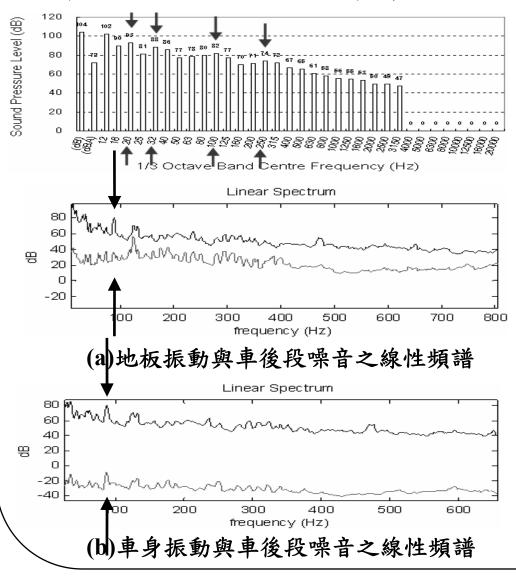
●隔振效果

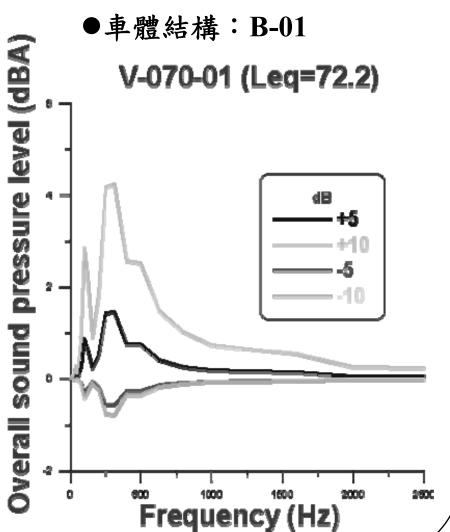
(a)振動傳輸比較--(B-01)

rpm	檔位	引擎	車架	地板	Ĭ	引擎一車架	車架—地板
800	0	115.98	103.69	90.91		12.285	12.784
800	4	118.39	103.9	91.723		14.493	12.173
800	5	117.8	103.72	92.185		14.075	11.539
800	6	117.69	102.79	92.098		14.907	10.689
900	0	116.24	107.35	93.405		8.8918	13.942
900	4	118.23	106.66	93.956		11.569	12.707
900	5	117.74	106.09	93.905		11.65	12.18
900	6	117.62	105.76	93.983		11.864	11.772

(b)振動傳輸比較--(B-02)

rpm	檔	引擎	車架	地板	車身	座位	引擎-	車架-	車架-	地板-
	位						車架	龙板	車身	座位
1300	0	131.06	111.05	88.165	91.857	97.515	20.012	22.885	19.193	-9.35
1300	D	131.09	109.69	87.679	90.017	97.295	21.405	22.009	19.673	-9.616
1500	0	132.67	113.23	90.8	93.53	93.535	19.435	22.43	19.7	-2.735
1500	D	132.88	111.95	91.363	92.335	91.038	20.927	20.586	19.615	0.32466
1600	0	133.31	114.08	93.344	92.913	92.934	19.23	20.736	21.167	0.41
1600	D	133.58	113.92	94.006	91.479	92.385	19.659	19.917	22.441	1.6207


(c)振動傳輸比較--(B-03) _


rpm	檔位	引擎	車架	地板	車身	座位		引擎-車架		車架一地板	車架-車身	地板一座位	
1300	0	123.21	100.3	95.104	90.481	83.687		22.909		5.1959	9.8189	11.417	
1300	3	123.02	99.613	95.61	90.518	84.479		23.407		4.0032	9.0956	11.131	
1300	4	123.16	99.274	96.561	91.749	84.691		23.886		2.7131	7.5247	11.87	
1300	5	123.41	100.2	96.17	94.891	84.252		23.211		4.0302	5.3099	11.919	
1500	0	125.38	101.22	96.345	89.688	81.528		24.155		4.8756	11.532	14.817	
1500	3	126.11	105.28	98.639	92.35	84.254		20.828		6.6432	12.932	14.385	
1500	4	126.12	105.36	98.631	95.451	83.06		20.765		6.7257	9.905	15.57	
1500	5	126.16	102.31	97.258	99.662	83.091		23.844		5.0573	2.6531	14.166	
1600	0	126.04	101.39	97.362	91.621	82.787		24.656		4.0236	9.7651	14.575	
1600	3	125.95	101.74	97.668	92.56	84.235		24.213		4.0673	9.1759	13.434	
1600	4	126.04	102.15	97.775	95.489	84.665		23.892		4.3735	6.659	13.11	
1600	5	125.93	102.54	98.414	101.4	83.386		23.382		4.1294	1.1426	15.028	

不同車型之車後段噪音改善策略評估

●車後段噪音與地板、車身振動關聯性比較

显

MATLAB GUI 之效益

- ●GUI人機介面之優點
 - 檔案輸入:
 - ▲ 格式化檔案,可探討不同案例分析
 - ■程式功能:
 - ▲ 聲音線性頻譜轉換為1/3八音頻帶頻譜
 - ▲計算聲音及振動dB及dBA
 - ▲計算振動傳輸比
 - ▲探討聲音與振動之關連性
 - 繪圖功能
 - ▲ 同時顯示線性頻譜及1/3八音頻帶頻譜
 - ▲ 可同時顯示兩種頻譜之比較,即時顯示差異量
 - ▲圖示可直接應用於報告撰寫
 - ■加速分析流程、減少報告之圖表整理時間

3-4應用MATLAB GUI 在基於振動方法之破壞檢測 Application of MATLAB GUI to Damage Detection by Vibration Base Method

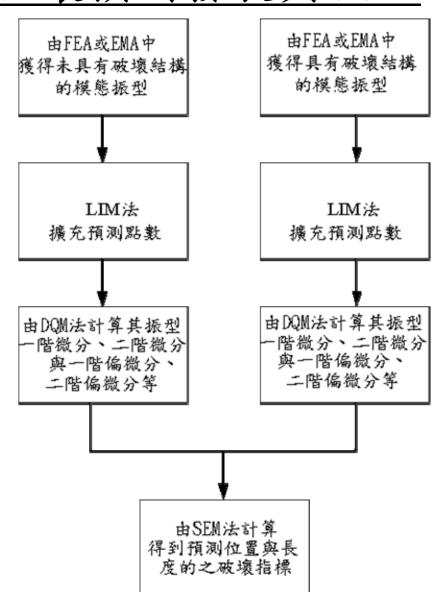
王栢村

國立屏東科技大學

機械工程系暨研究所

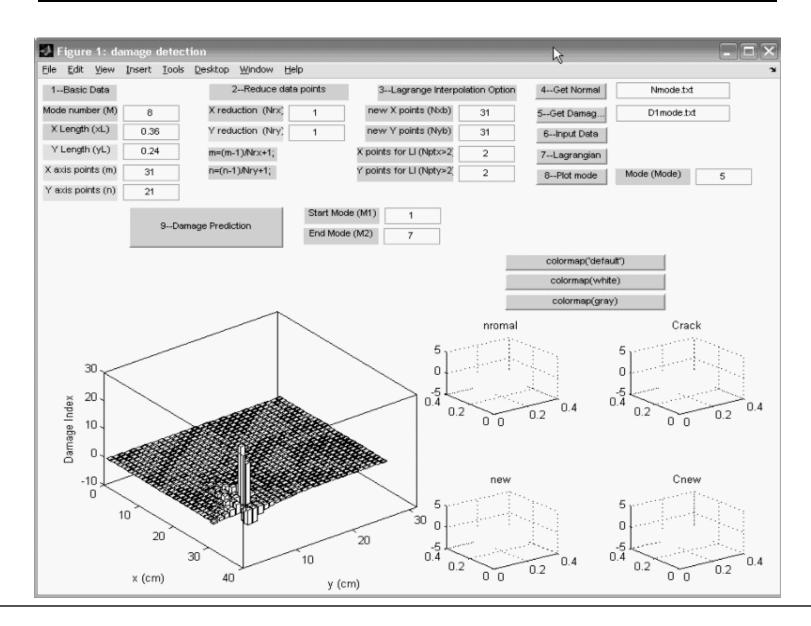
TEL: (08)770-3202轉7017

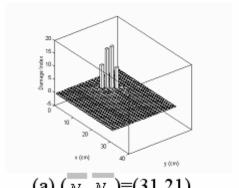
FAX: (08)774-0142

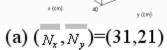

E-mail: wangbt@mail.npust.edu.tw

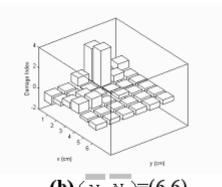
www: http://140.127.6.133/lab

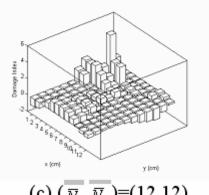
基於模態振型之結構破壞預測發展與驗證

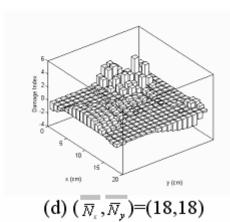

- ●破壞預測的預測流程是藉由振動之原理,獲得結構之振型
 - ■先帶入Lagrange-Interpolation法(LIM)進 行點數的擴充
 - ■再代入微積分值法 (DQM)求得模態振型的 一階微分、二階微分之 結果
 - ■經由應變能(SEM)法計 算而獲得預測破壞位置 處之破壞指標

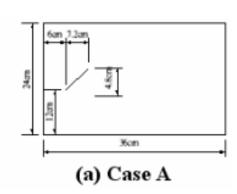

MATLAB GUI for Damage Detection

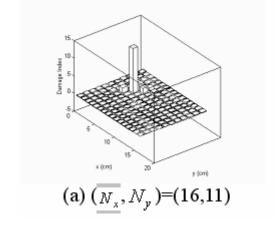


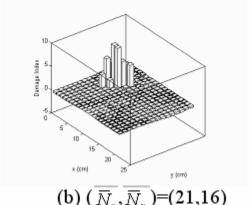



Case study (1)

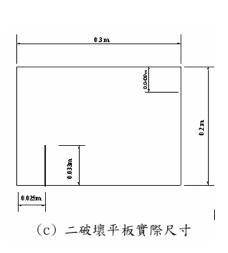





(b) $(N_x, N_y) = (6,6)$



(c) $(\overline{\overline{N}_x}, \overline{\overline{N}_y}) = (12,12)$



(b) $(\overline{\overline{N}}_x, \overline{\overline{N}}_y) = (21,16)$

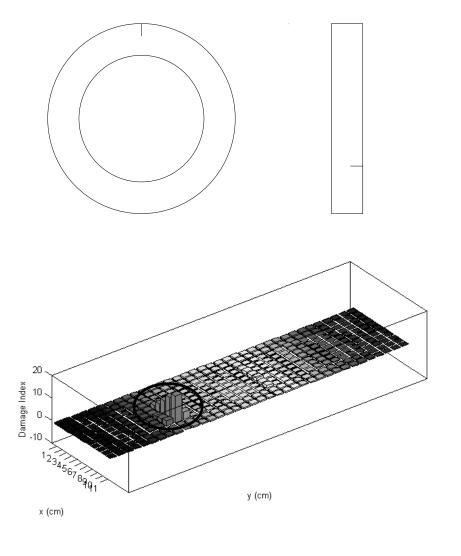
Case study (2)

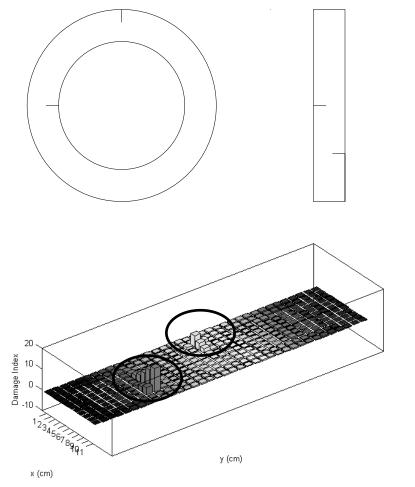
-				
Npt=	=2 2-damage			
mode		Crack plate	(N̄, =24, N̄, =24)	(N̄, =36, N̄, =36)
	$(N_x = 12, N_y = 12)$	$(N_x = 12, N_y = 12)$		
	aronal	Crack	_	_
	5	5T 288		
		0	15	20
1	0.4 0.2 0.0 0.1 0.2	0.4 0.2 0.1 0.2	z 10.	ğ 11.
	Expand	Expand	2 s	
	crack plate	crack plate		a dilinial
				111
	$(N_x = 24, N_y = 24)$	$(\underline{N}_x = 36, \underline{N}_y = 36)$		" "
	Cnew	Cnew	10 15 20	20
	5	5 y	15 20 10 10	x (xm) 40 y (xm)
	0	0	x (cm) 25 y (cm)	
	0.5 0.2 0.1 0.2	0.4 0.2		
	0 0 0.1	0.2 0 0 0.1 0.2		
mode		Crack plate	$(N_x = 24, N_y = 24)$	(N̄, =36, N̄, =36)
	$(N_x = 12, N_y = 12)$	$(N_x = 12, N_y = 12)$		
		_ ′		
	nromai	Crack		
		6		_
	HEETE STATES	- 12-12-12-12-12-12-12-12-12-12-12-12-12-1		
2	04 02 0 0 01 02	0.4 0.2 0.0 0.1 0.2	n l	11
	Expand	Expand	1 6	
	crack plate	crack plate		and the same of th
	(N=24,N=24)	(N ₂ = 36, N ₃ = 36)	5	2
		(27 _x 30,27 _y 30)	3. 111, 4	14411
	Cnew	E committee of the	10 15 20	10 30
	0	n	20 5 10	20 20
		THE RESIDENCE OF THE PARTY OF T	x (cw) 26 y (cm)	s (cm) 40 y (cm)
	4 7 3000000	5 1		
	0.4 0.2 0.0 0.1 0.2	0.4 0.2 0.0 0.1 0.2		

應用振動方法於任意形狀平板結構之裂縫預測

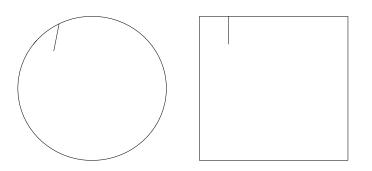
● 研究目的

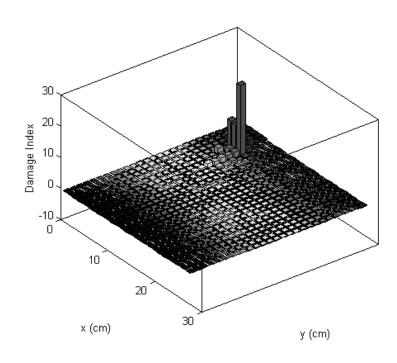
- ■本文將以有限元素分析得到結構的模態振型變化並搭配應變能法 (Strain Energy Method, SEM),導入座標轉換之觀念發展出對任意形 狀平板的破壞檢測程式
- ■以MATLAB程式建立圖形人機介面(Graphic User Interface, GUI) 以 預測具裂縫之任意形狀平板結構的破壞位置與長度。

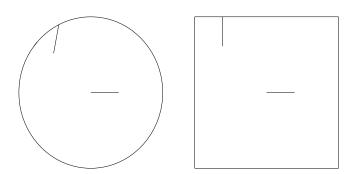

● 研究方法

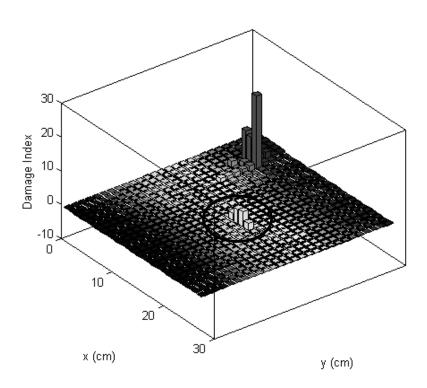

- ■首先,以有限元素分析無裂縫與具裂縫之任意形狀平板模型,得到 其有、無裂縫的模態振型,
- ■再將模態振型資訊由應變能法,結合微分值積法建立之裂縫預測程式進行二維任意形狀平板結構的裂縫位置預測。
- ■任意平板破壞預測程式利用微分值積法求得任意平板模態振型的一次微分與二次微分後,經由應變能法運算,可得到任意形狀板裂縫位置與裂縫長度的預測指標資訊。

Case study (3)

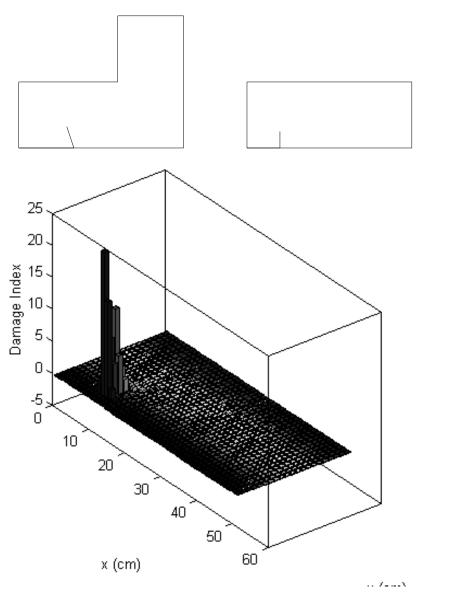


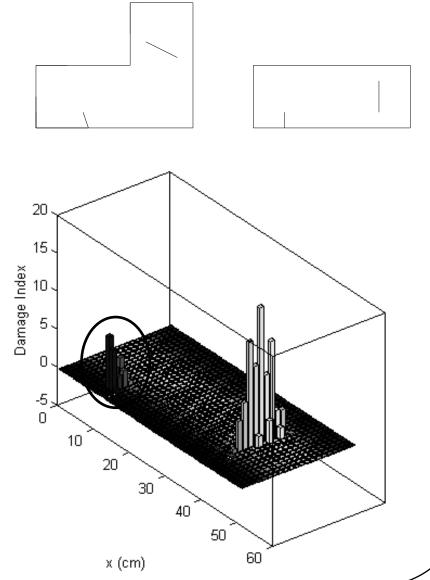






Case study (4)





MATLAB GUI 之效益

- ●GUI人機介面之優點
 - ■便於參數化之設定
 - ▲分析點數之設定
 - ▲ LIM擴充點之設定
 - ■檔案輸入:
 - ▲ 格式化檔案,可探討不同案例分析
 - ■繪圖功能
 - ▲ 可即時顯示各模態振型,判斷分析之正確性
 - ▲可即時顯示各模態振型之預測效果
 - ▲圖示可直接應用於報告撰寫
 - 加速分析流程
 - ■減少報告之圖表整理時間

3-5應用MATLAB於衝擊試驗機之衝擊座分析

Application of MATLAB GUI to Pad Geometry Analysis for Shock Testing Machine

王栢村

國立屏東科技大學

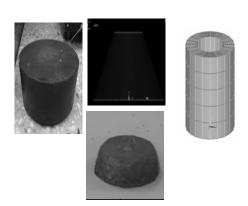
機械工程系暨研究所

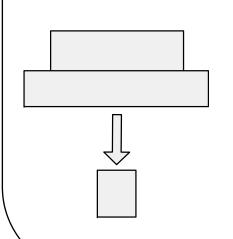
TEL: (08)770-3202轉7017

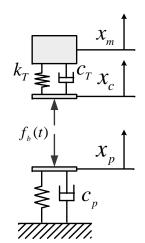
FAX: (08)774-0142

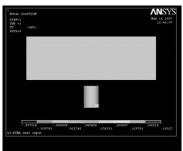
E-mail: wangbt@mail.npust.edu.tw

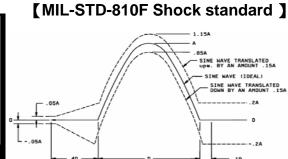
www: http://140.127.6.133/lab

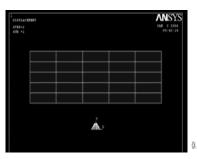


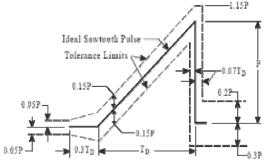


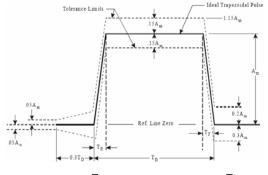

衝擊試驗機動作原理與衝擊座之設計





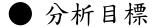


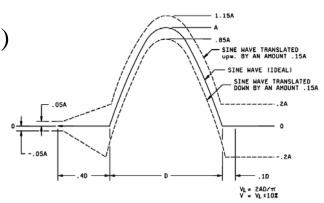



[Half-Sine wave]

[Back Sawtooth wave]

[Rectangle wave]

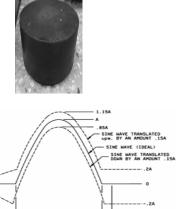


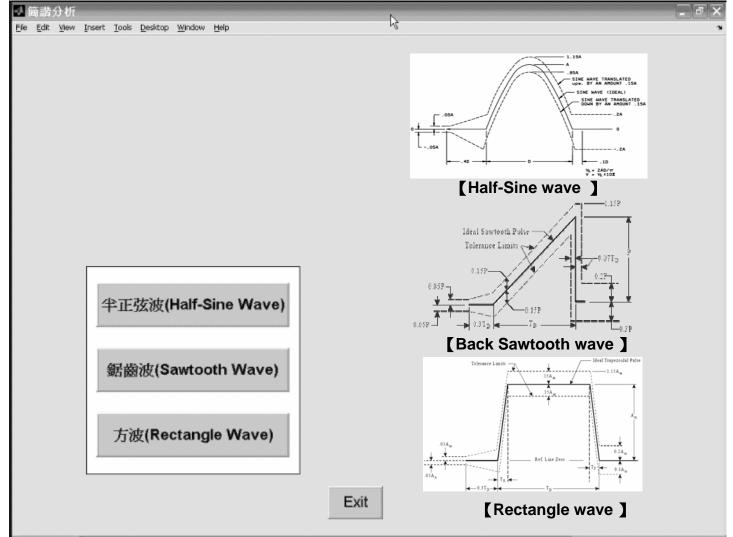

衝擊試驗機動作原理與衝擊座之設計

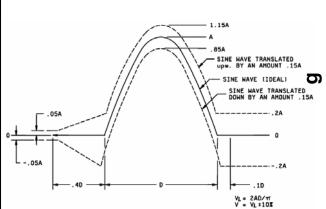
●問題定義

- ■一般衝擊試驗規範所規定之衝擊波型主要有
 - ▲ 半正弦波(half sine pulse)
 - ▲ 單邊鋸齒波(terminal peak saw-tooth pulse)
 - ▲ 梯形方波(trapezoidal pulse)
- ■其波形變化主要由衝擊座所控制
- ■本文針對半正弦波衝擊座進行設計分析

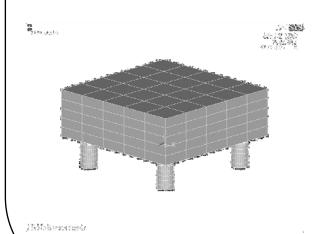
- ■發展一套衝擊座幾何預測分析方法
- ■使衝擊座在受到衝擊平台撞擊後,平台頂面所產生之半正弦波加速 度峰值與衝擊時間長度能符合衝擊規範之要求,以協助設計特定形 狀與大小之衝擊座
- ■期望所發展衝擊座單自由度系統幾何外型預測理論(SDOF剛性平台理論)能與有限元素分析軟體模擬相互驗證




MATLAB GUI for Pad Selection



VL = 2A0/π V = VL =10X

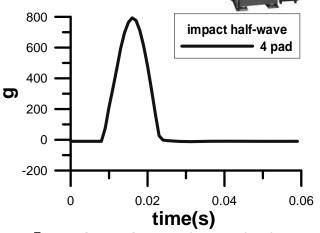


Impact Simulation Analysis for Half-Sine wave form Generation in Shock Test

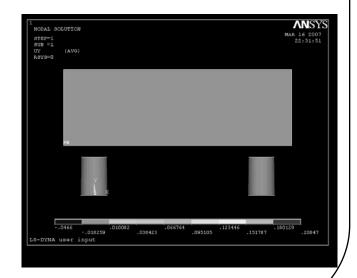
[mil-std-202g--Method 213B-Shock standard Half-Sine wave]

impact half-sine wave

1 pad


200

0


0
0
0.02
0.04
0.06
time(s)

[The simulation half-wave for single pad]

[The simulation half-wave for four pad]

The FE_model of table and pad 】

[Procedure of single pad for LS-DYNA simulation] [Procedure of four pad for LS-DYNA simulation] 53

显

MATLAB GUI 之效益

- GUI人機介面之優點
 - 便於參數化之設定
 - ▲ 波形參數之設定:衝擊波振幅、衝擊時間
 - ▲ 衝擊座之材料參數、數量設定
 - 功能:
 - ▲ 應用所發展衝擊座單自由度系統幾何外型預測理論(SDOF剛性平台理論)
 - ▲ 即時預測衝擊座幾何形狀、平台落下高度、衝擊性能
 - ■繪圖功能
 - ▲ 可即時顯示衝擊波形時間域響應,判斷波形之正確性
 - ■加速衝擊座幾何形狀、平台落下高度之預測流程
 - ▲ 減少試誤法之時間
 - ▲ 便於探討各參數變化之影響

3-6應用MATLAB GUI 在模型驗證 分析模組整合 Application of MATLAB GUI to Model Verification

王栢村

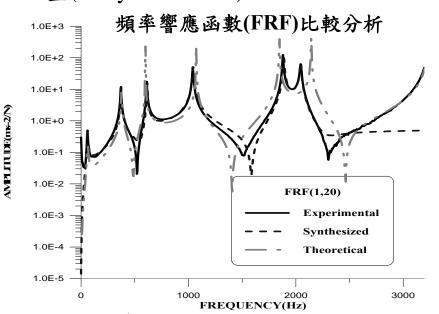
Analysis Module

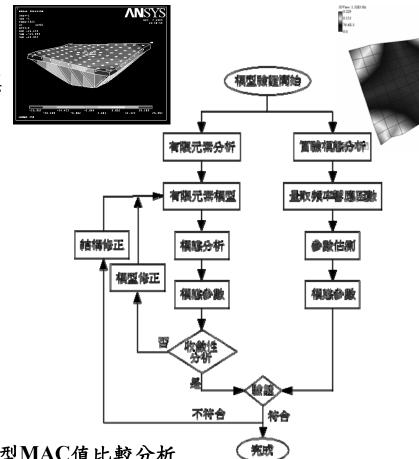
國立屏東科技大學

機械工程系暨研究所

TEL: (08)770-3202轉7017

FAX: (08)774-0142


E-mail: wangbt@mail.npust.edu.tw

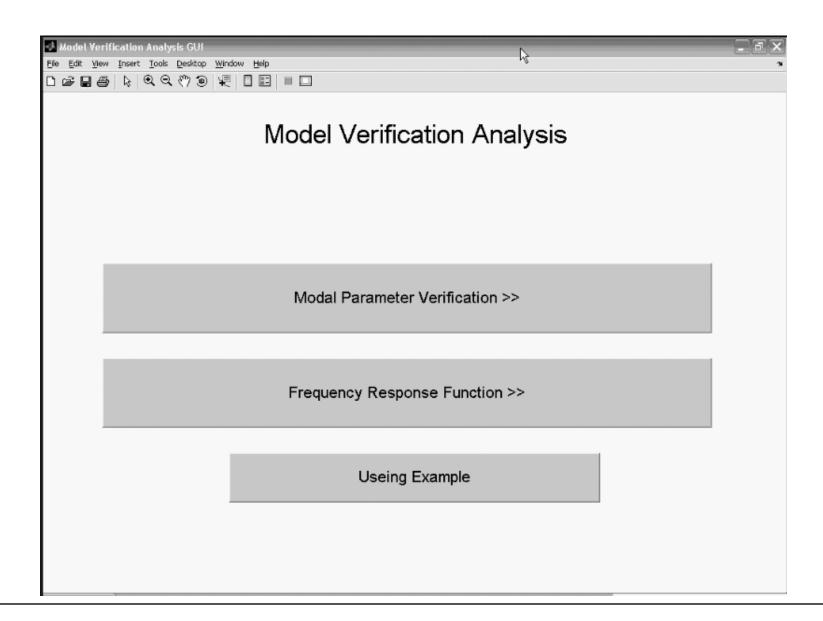

www: http://140.127.6.133/lab

模型驗證(model verification)之理念與應用

- 模型驗證之主要目的,
 - 在確認理論數學模型之合理性、正確性
 - 使足以得到代表實際結構之等效分析模 型(analytical model)。

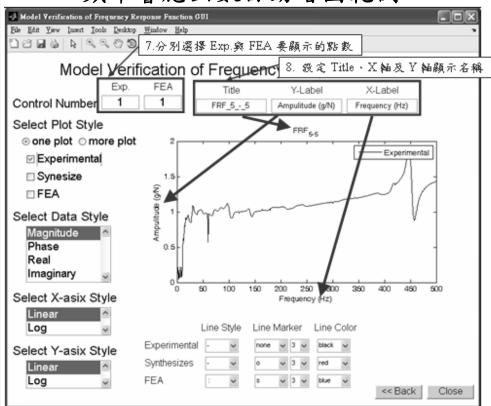
自然頻率比較分析

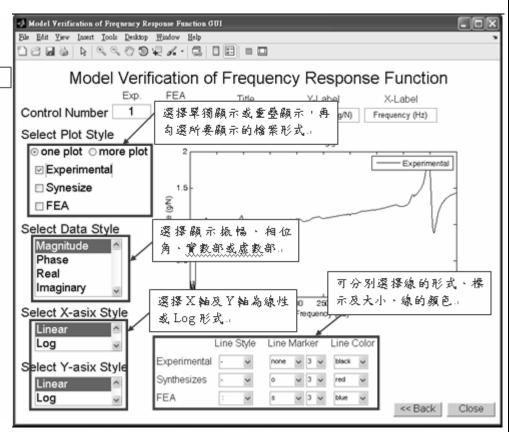
模態數	實驗值 (Hz)	理論值 (Hz)	誤差百分 比(%)	模態特性
1	60.062	60.182	-0.200%	$1^{st} - By$
2	372.010	378.490	-1.742%	$2^{nd} - By$
3	616.000	599.790	2.631%	$1^{st} - Tx$
4	1040.000	1027.700	1.183%	$3^{rd} - By$
5	1880.000	1847.100	1.750%	$2^{nd} - Tx$
6	2040.000	2143.500	-5.074%	$4^{th} - By$


模態振型MAC值比較分析

		· ·		-		
Mode	1 st By	2 nd By	1 st Tx	3 rd By	2 nd Tx	4 th By
1 st By	0.99556	0.00871	0.00966	0.00968	0.00283	0.00306
2 nd By	0.01073	0.98598	0.00097	0.00061	0.01010	0.00638
1 st Tx	0.01081	0.00181	0.95199	0.00748	0.00924	0.00280
3 rd By	0.01135	0.00116	0.00292	0.99406	0.00053	0.00134
2 nd Tx	0.00241	0.01058	0.00632	0.00327	0.98482	0.00195
4 th By	0.00321	0.00038	0.00057	0.00015	0.00402	0.99603

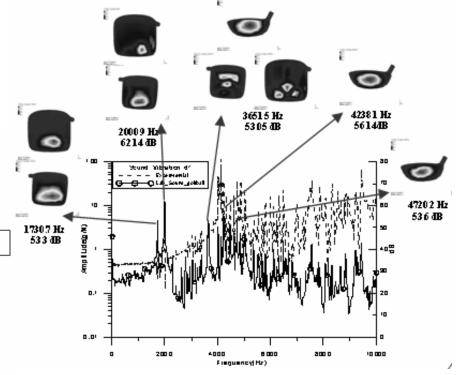
MATLAB GUI for Model Verification





頻率響應函數之自動繪圖輸出比較

頻率響應函數自動繪圖範例



FEA與EMA模態振型MAC值之自動計算

自然頻率對應之模態振型範例

模態振型MAC值比較分析

Mode	1 st By	2 nd By	1 st Tx	3 rd By	2 nd Tx	4 th By
1 st By	0.99556	0.00871	0.00966	0.00968	0.00283	0.00306
2 nd By	0.01073	0.98598	0.00097	0.00061	0.01010	0.00638
1 st Tx	0.01081	0.00181	0.95199	0.00748	0.00924	0.00280
3 rd By	0.01135	0.00116	0.00292	0.99406	0.00053	0.00134
2 nd Tx	0.00241	0.01058	0.00632	0.00327	0.98482	0.00195
4 th By	0.00321	0.00038	0.00057	0.00015	0.00402	0.99603

FEA與EMA之自然模態對應之比較

表 3 球頭 FEA 與 EMA 自然頻率與模態振型保證指標(MAC)比較表

	EMA			FEA	F 0/		MAC			EMA]	FEA	F 0/		MAC	
Mode	Freq.(Hz)	Damp%	Mode	Freq.(Hz)	Err%	Face	Crown	Sole	Mode	Freq.(Hz)	Damp%	Mode	Freq.(Hz)	Err%	Face	Crown	Sole
E01	1692.7	0.169	/		/		/		E47	6048.6	0.107	F35	5962.3	-1.43	0.79	0.032	0.003
E02	1730.7	0.185	F01	1731.9	0.07	0.99	0.97	0.84	E48	6124.4	0.075	F37	6176.8	0.86	0.839	0.016	0.003
E03	1869.4	0.158	/			/	/	/	E49	6222.9	0.088			/	/	/	
E04	2000.9	0.166	F02	1963.8	-1.85	0.964	0.925	0.57	E50	6254.9	0.077	F38	6283.1	0.45	0.876	0.027	0.209
E05	2285.2	0.164	F03	2285.5	0.01	0.891	0.909	0.423	E51	6311.8	0.118	F39	6392.5	1.28	0.536	0.16	0.003
E06	2404.7	0.06	F04	2499.4	3.94	0.173	0.684	0.013	E52	6441.2	0.104						
E07	2550.5	0.175	F05	2546.6	-0.15	0.106	0.452	0.174	E53	6489.4	0.084			/			
E08	2649.8	0.143	F06	2652.1	0.09	0.623	0.92	0.011	E54	6571.7	0.07	F40	6526.5	-0.69	0.364	0.112	0.1
E09	2792.6	0.114	F08	2805.2	0.45	0.351	0.761	0.025	E55	6670.0	0.113	F41	6696	0.39	0.41	0.123	0.03
E10	2877.3	0.066				$\overline{}$	$\overline{}$	/	E56	6807.1	0.121	F43	6821.8	0.22	0.418	0.001	0.115
E11	2943.0	0.143						/	E57	6905.0	0.114	F44	6988.1	1.20	0.789	0.002	0.108
E12	3048.1	0.123	F09	3057.5	0.31	0.036	0.798	0.201	E58	6987.8	0.141	$\overline{}$	$\overline{}$		/		
E13	3151.7	0.148			$\overline{}$	$\overline{}$			E59	7022.7	0.107			/			
E14	3229.8	0.06						/	E60	7068.0	0.088		/	/			
E15	3323.6	0.105	F11	3418.1	2.84	0.839	0.269	0.682	E61	7141.3	0.081	F45	7074.3	-0.94	0.249	0.063	0.027
E16	3383.2	0.105	F12	3450.4	1.99	0.688	0.203	0.387	E62	7246.3	0.137	$\overline{}$		/			
E17	3651.5	0.18	F13	3655.5	0.11	0.81	0.554	0.59	E63	7281.3	0.078			/			
E18	3841.4	0.094	F14	3757.2	-2.19	0.819	0.645	0.292	E64	7340.1	0.058	F47	7221.9	-1.61	0.793	0.04	0.111
E19	3926.5	0.135							E65	7402.0	0.075						
E20	4019.1	0.061	F15	3959.6	-1.48	0.956	0.222	0.1	E66	7491.5	0.243	F51	7569.4	1.04	0.516	0.032	0.191
E21	4107.8	0.08							E67	7554.7	0.139						
E22	4135.8	0.077	F17	4170.3	0.83	0.933	0.094	0.043	E68	7734.9	0.089						
E23	4238.1	0.07	F18	4268.3	0.71	0.77	0.018	0.104	E69	7808.4	0.086						

显

MATLAB GUI 之效益

- GUI人機介面之優點
 - ■檔案輸入:
 - ▲ 格式化檔案,包括:FEA與EMA
 - ◆ 頻率響應函數、自然頻率、模態振型
 - ■計算功能:
 - ▲ FEA與EMA自然頻率誤差
 - ▲ FEA與EMA模態振型MAC值,可判斷FEA與EMA關聯性模態
 - ▲ 可探討不同輸入輸出位置之頻率響應函數
 - 繪圖功能
 - ▲ 可即時顯示FEA與EMA頻率響應函數,判斷模型驗證之正確性
 - ▲ 可探討比較不同輸入輸出位置之頻率響應函數
 - ▲ 圖示可直接應用於報告撰寫
 - ■加速模型驗證分析流程
 - ▲ 自動判讀FEA與EMA關聯性模態,免除人工比對之苦
 - ▲ 減少報告之圖表整理時間

3-7應用MATLAB GUI 於高爾夫球具 振動品質指標分析模組 Application of MATLAB GUI to Vibration Quality Indicators Analysis Module of Golf Clubs

王栢村

國立屏東科技大學

機械工程系暨研究所

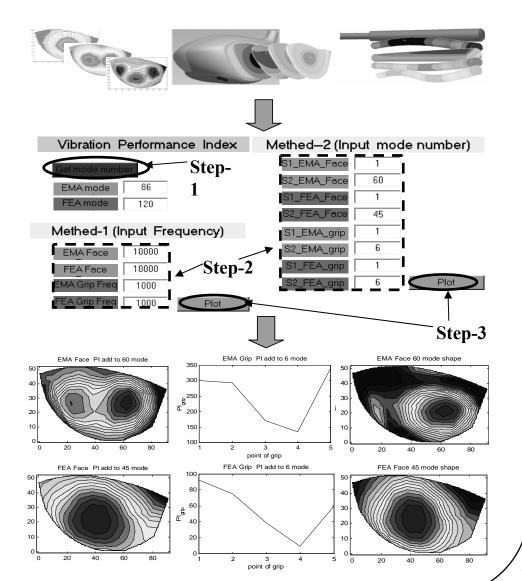
TEL: (08)770-3202轉7017

FAX: (08)774-0142

E-mail: wangbt@mail.npust.edu.tw

www: http://140.127.6.133/lab

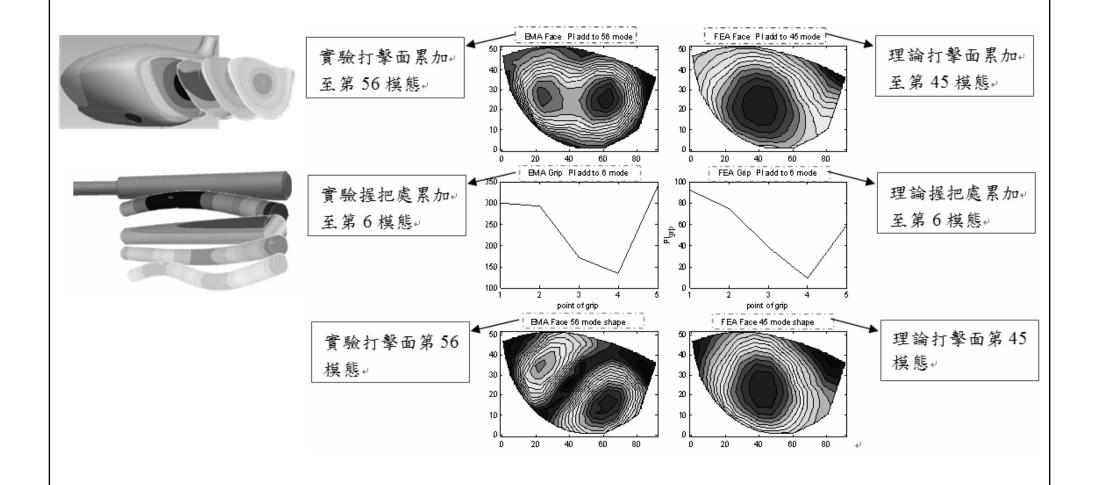
高爾夫球具振動品質指標分析

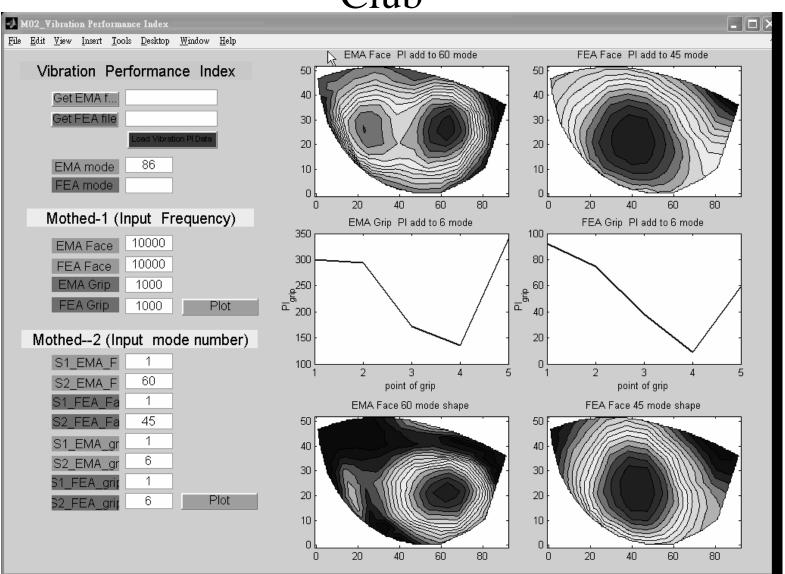

●振動品質指標的分析流程 是藉由實驗與理論分析 將不同頻率之振型累加獲 得結構之振型,並探討模 態對於振動特性影響之貢 獻度

方法1

■輸入實驗與理論之 振型累加至X頻率

方法2


▲輸入實驗與理論之 第N模態數及累加 至第M個模態


高爾夫球具振動品質指標分析

MATLAB GUI for Vibration Quality of Golf Club

高爾夫球具振動品質指標分析

- 研究目的
 - ■可針對打擊面與握把處進行理論與實驗分析之振動品質指標比較。
 - ■瞭解振動性能指標貢獻度高之自然頻率位置。
 - ■以MATLAB程式建立圖形人機介面(Graphic User Interface, GUI) 以瞭解振型累加後之模態振型圖與球桿振動量較大之位置。
- 研究方法
 - ■將實驗模態分析所得之球頭打擊面各模態之振型進行累加,以獲得 打擊面模態振型累加性能指標,同時定義各模態累加值與累加之總 值之百分比,針對模態對於球頭打擊面振動模態特性影響之貢獻度 進行探討。
 - ■主要對球具握把處實驗所得之振型進行累加,其指標數值愈小,顯示該處之振動量愈小,也就是球桿於擊球時傳遞給打者的振動量愈小,使擊球舒適度較佳。

MATLAB GUI 之效益

- GUI人機介面之優點
 - 便於參數化之設定
 - ▲ 累加至X自然頻率位置
 - ▲ 累加至M模態振型
 - 檔案輸入:
 - ▲ 格式化檔案,可探討不同案例分析
 - ■繪圖功能
 - ▲ 可即時顯示球頭各模態振型累加,探討振動品質性能指標
 - ▲ 可即時顯示球桿各模態振型累加,瞭解球桿最大振動量及 位置
 - ▲ 圖示可直接應用於報告撰寫
 - ■加速分析流程
 - ■減少報告之圖表整理時間

3-8應用MATLAB GUI 在球頭與球具 聲音與振動關聯性分析模組

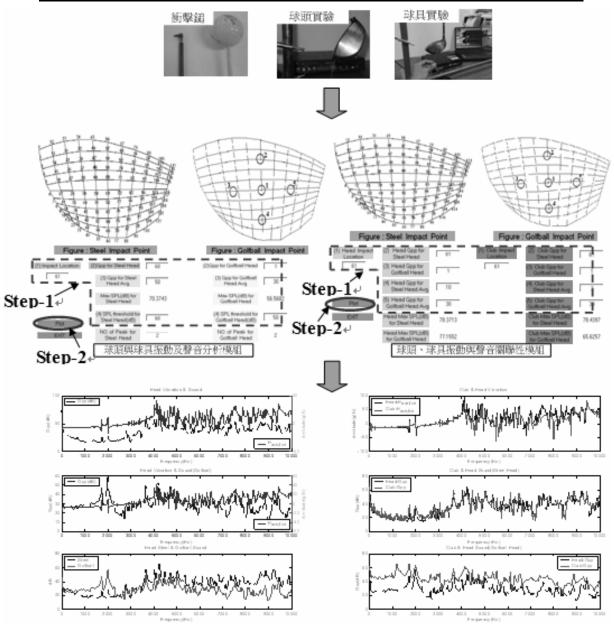
王栢村

國立屏東科技大學

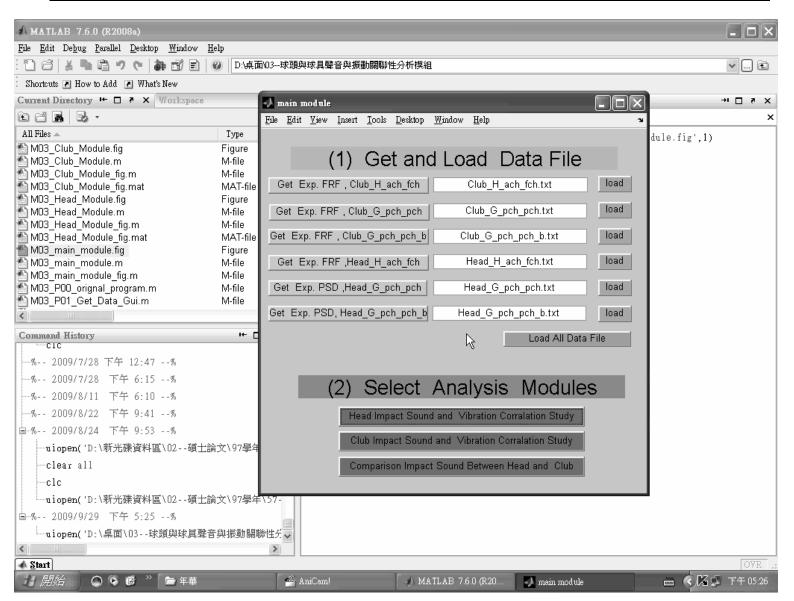
機械工程系暨研究所

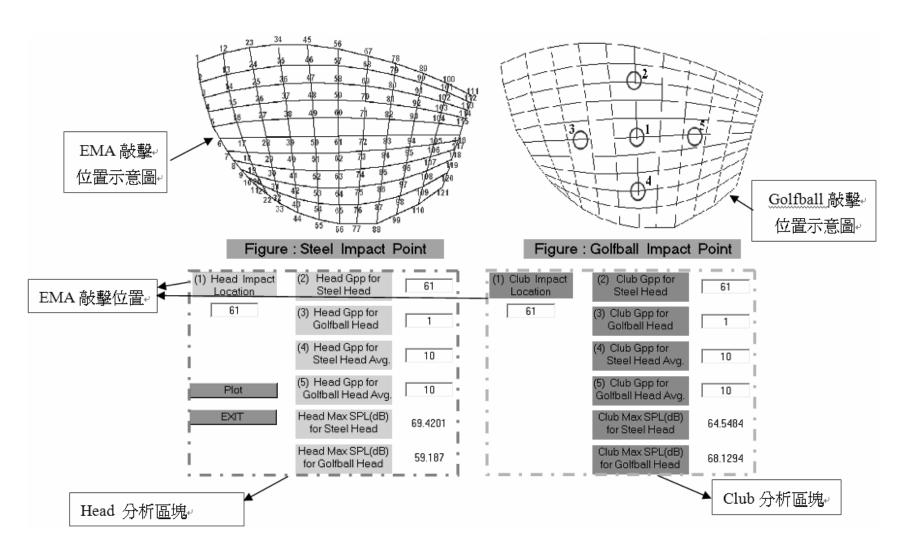
TEL: (08)770-3202轉7017

FAX: (08)774-0142

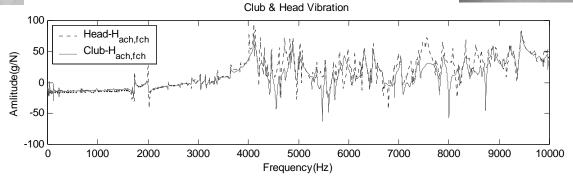

E-mail: wangbt@mail.npust.edu.tw

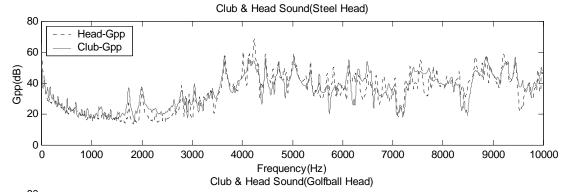
www: http://140.127.6.133/lab

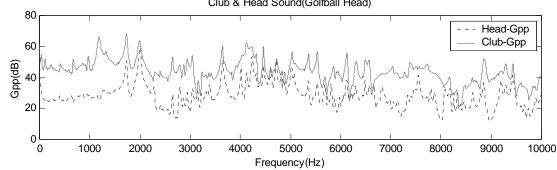

球頭與球具聲音與振動關聯性分析流程


球頭與球具聲音與振動關聯性分析

Case study







Case study

球頭與球具振動及聲音分析模組結果圖

球頭與球具聲音與振動 關聯性分析

● 研究目的

- ■在對球具進行聲音振動模態與擊球聲音探討前,須先了解球頭與球具振動特性之差異,以確認影響球具擊球聲音之部分。
- ■以MATLAB程式建立圖形人機介面(Graphic User Interface, GUI)加速對不同球頭及球具,實驗量測點所得之聲音線性頻譜與頻率響應函數進行比對。

● 研究方法

- ■首先,輸入以鋼質及高爾夫球衝擊鎚於不同球頭及球具實驗量測所 得之聲音線性頻譜與頻率響應函數,
- ■便可於分析時輸入:衝擊鎚敲擊位置、衝擊鎚敲擊球頭第N點之聲 音線性頻譜、聲音線性頻譜平滑次數。
- ■快速地瞭解,球頭與球具頻率響應函數比較及球頭與球具不同衝擊 鎚之聲音線性頻譜比較。

MATLAB GUI 之效益

- GUI人機介面之優點
 - 便於參數化之設定
 - ▲ 衝擊鎚敲擊位置
 - ▲ 敲擊第N點之聲音線性頻譜
 - ▲ 聲音線性頻譜平滑次數
 - 此模組最大功能在於可分析,固定敲擊點頻率響應函數與不同點之聲音線 性頻譜比較圖,藉由不同點分析比較可對結構之特性有更進一步了解。
 - 檔案輸入:
 - ▲ 格式化檔案,可探討不同案例分析
 - 繪圖功能
 - ▲ 可即時顯示不同衝擊鎚或不同球頭及球具之振動與聲音線性頻譜進行 比較
 - ▲ 圖示可直接應用於報告撰寫
 - 與以往相較下,於此模組中繪製分析比較曲線可大大縮短實驗後數據整理時間,相對的提高工作效率節省時間減少報告之圖表整理時間

3-9應用MATLAB GUI 於球具室外聲音 量測及預測分析模組

王栢村

國立屏東科技大學

機械工程系暨研究所

TEL: (08)770-3202轉7017

FAX: (08)774-0142

E-mail: wangbt@mail.npust.edu.tw

www: http://140.127.6.133/lab

球具室外聲音量測及預測分析模組

- 分別輸入
 - ■(1)球具實驗敲擊位置
 - ■(2)室外擊球聲音量測位置
 - ■(3)平滑化次數。
- 得到輸出
 - ■球具頻率響應函數與室外擊球聲 音線性頻譜曲線比對圖
 - ■自動抓取聲音峰值頻率對應之dB 值與樂音頻率比
 - ■室外擊球聲音1/3八音頻帶頻譜圖
 - ■截取室外擊球聲音峰值頻率進行 回撥模擬室外擊球聲音。

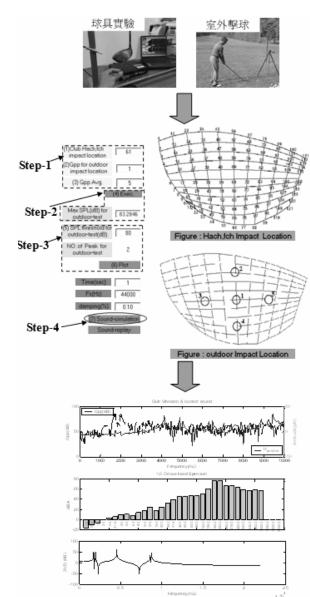


圖3 球具室外聲音量測分析模組流程圖

球具室外聲音量測及預測分析模組

● 分別輸入

- ■(1)球具振動實驗敲擊位置
- ■(2)球具理論分析外力位置
- ■(3)球具室外聲音敲擊位置
- ■(4)室外擊球聲音預測平滑化次數。

● 得到輸出

- 球具理論分析與實驗之頻率響應函數 比較圖
- 室外實際擊球與預測之聲音線性頻譜 比較圖
- 自動抓取聲音峰值頻率對應之dB值與 樂音頻率比
- 室外擊球聲音預測1/3八音頻帶頻譜圖
- 室外實際擊球聲音程式驗證圖
- 截取室外擊球聲音預測峰值頻率進行 回撥模擬室外擊球聲音。

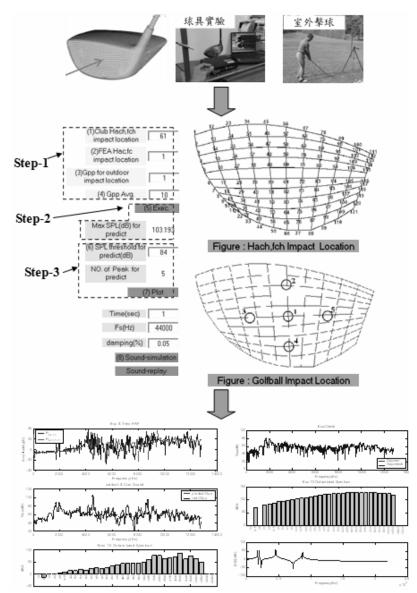
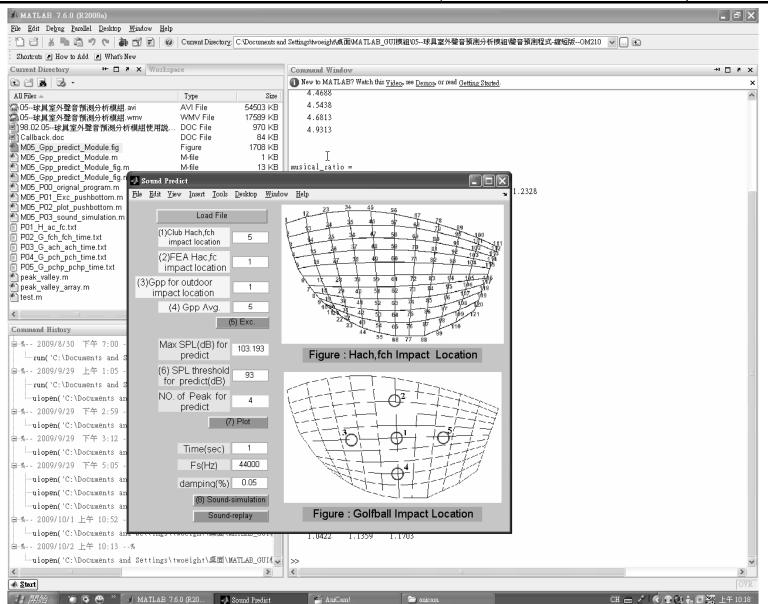
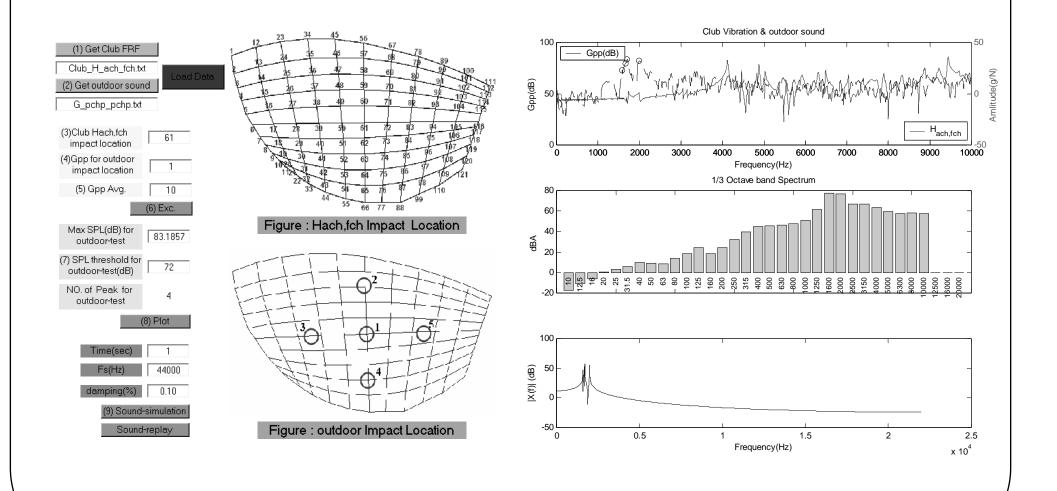
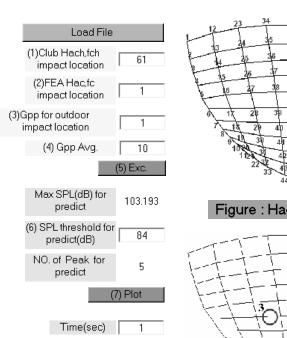



圖4 球具室外聲音預測分析模組流程圖


MATLAB GUI 於球具聲音預測分析模組


聲音量測分析模組Case study

聲音預測分析模組Case study

44000

0.05

(8) Sound-simulation

Sound-replay

Fs(Hz)

damping(%)

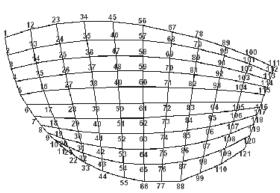


Figure : Hach,fch Impact Location

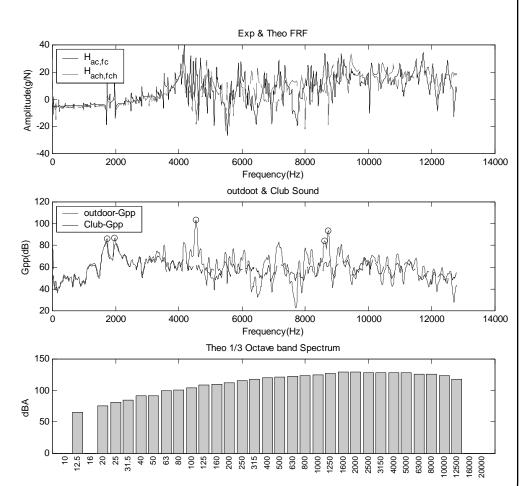



Figure : Golfball Impact Location

球具室外聲音量測及預測分析模組

● 研究目的

- ■建立一方便且省時之高效率分析工具,以掌握高爾夫球具之特性。
- ■建立實驗與理論之聲音量測分析整合模組系統,能針對實驗做單獨 分析,同時結合理論分析進行虛擬測試,可有效率及系統化探討高 爾夫球具之振動與擊球聲音特性,並降低樣品反覆製作與節省成本 及時間設計開發時程。
- ■針對不同高爾夫球具做分析,使有效率地建立相關資料庫以作為爾 後高爾夫球具設計之參考依據。

● 研究方法

- ■應用有限元素分析,對高爾夫球具進行簡諧響應分析,求得其頻率響應函數。
- 利用實驗模態分析,實驗量測所得之頻率響應函數。
- ■進而求得室外擊球聲音之自身功率頻譜密度函數,以預測球頭結構之擊球聲音。

显

MATLAB GUI 之效益

- GUI人機介面之優點
 - ■檔案輸入:
 - ▲ 格式化檔案,可探討不同案例分析
 - 繪圖功能
 - ▲ 可即時顯示理論與實驗之頻率響應函數比較圖,探討振動 響應差異性
 - ▲ 可即時顯示原始與預測之聲音線性頻譜比較圖,瞭解球具 聲音頻譜差異性,進而修改設計
 - ▲ 圖示可直接應用於報告撰寫
 - ■可提高數值分析效率
 - ■可對高爾夫球具室外擊球之聲音預測進行模擬與多次回撥
 - ■加速分析流程
 - ■減少報告之圖表整理時間

3-10應用MATLAB GUI於風扇噪音量測模組 之開發與驗證評估

Application of MATLAB GUI to Fan noise measurement modules of the development and validation assessment

王栢村

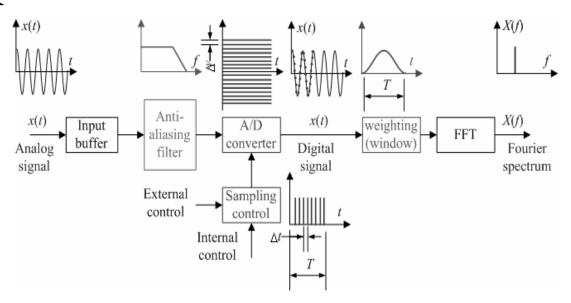
國立屏東科技大學

機械工程系暨研究所

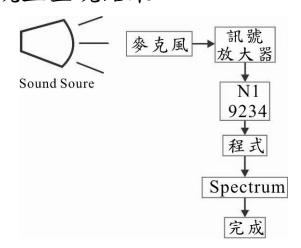
TEL: (08)770-3202轉7017

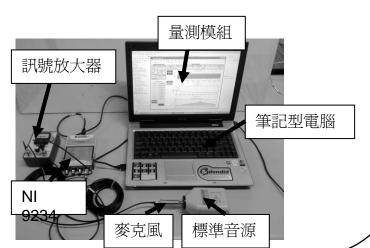
FAX: (08)774-0142

E-mail: wangbt@mail.npust.edu.tw


www: http://140.127.6.133/lab

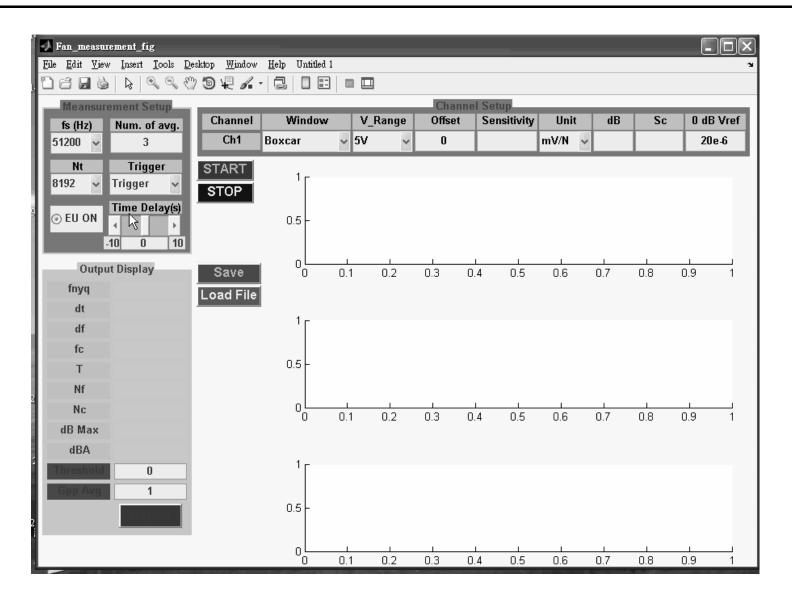
風扇噪音量測模組預測發展與驗證

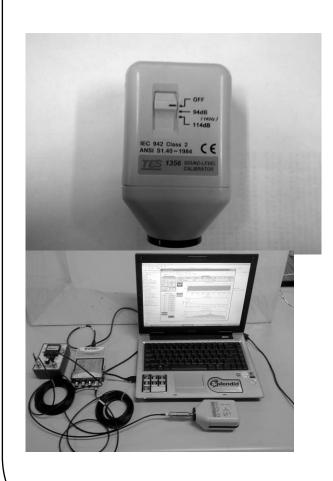

- 風扇噪音量測的預測流程是藉由信號處理之原理,獲得風扇之頻率
 - ■當有一時間域類比訊號 輸入 會先經過一段輸入的緩衝區
 - ■再進入反假象濾波器,將雜訊以其他能量型式消耗掉
 - ■之後訊號進入數位轉換器, 將類比連續訊號描繪轉變為 數位訊號
 - ■最後經由加權函數處理訊號 洩漏之問題,再利用快速傅 立葉轉換轉換為頻率域訊號

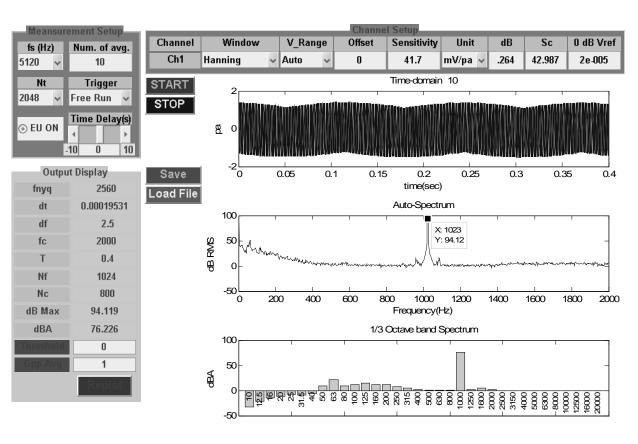


應用信號處理之原理於風扇之噪音預測

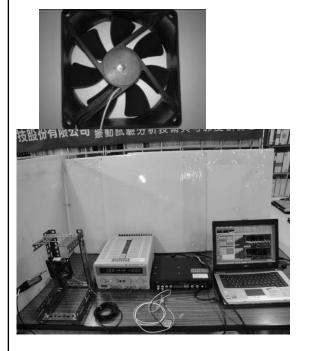
- 研究目的
 - ■以MATLAB程式建立圖形人機介面(Graphic User Interface, GUI) 以預測風扇之噪音。
 - ■建立低成本、客製化之風扇噪音量測系統以便能安裝於個人電腦執 行檢測分析。
- 研究方法
 - ■一聲音之訊號經由麥克風量測聲音壓力傳送到訊號放大器,將訊號放大後,再經由訊號擷取卡(USB 9234)傳送到電腦之風扇噪音量測系統上呈現結果。

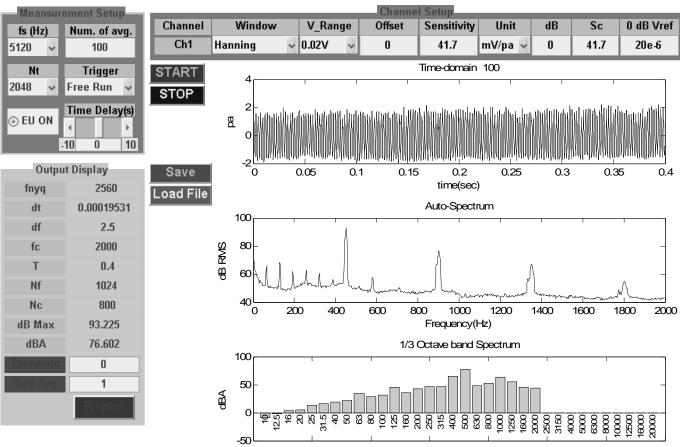



MATLAB GUI for Fan Noise Measurement



Case study (1)





Case study (2)

MATLAB GUI 之效益

- GUI人機介面之優點
 - 便於參數化之設定
 - ▲ 取樣頻率(f_s)之設定
 - ▲ 時間點數(N,)之設定
 - ■檔案輸入
 - ▲ 格式化檔案,可探討不同案例分析
 - 繪圖功能
 - ▲ 可即時顯示時間域響應、風扇聲音線性頻譜及1/3八音頻帶頻譜,判斷量測之正確性
 - ▲ 可即時顯示dB Max及頻率峰值
 - ▲ 圖示可直接應用於報告撰寫
 - 加速風扇量測流程
 - ■減少報告之圖表整理時間

3-11應用MATLAB GUI 在刀具頻率響應函數模組開發 Application of MATLAB GUI to Development of Duel Channel Frequency Analyzer for Application to Tool FRF Measurement

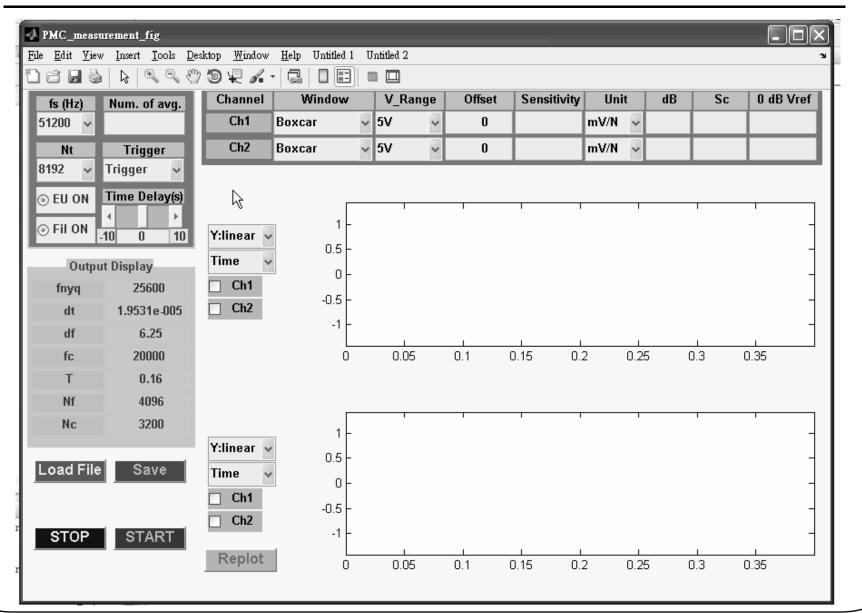
王栢村

國立屏東科技大學

機械工程系暨研究所

TEL: (08)770-3202轉7017

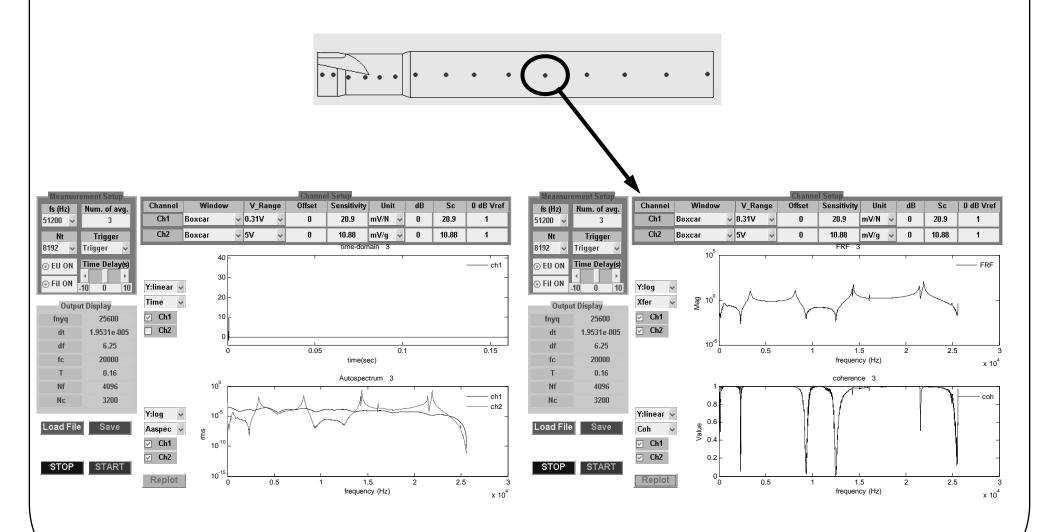
FAX: (08)774-0142


E-mail: wangbt@mail.npust.edu.tw

www: http://140.127.6.133/lab

MATLAB GUI for Tool FRF Measurement

3

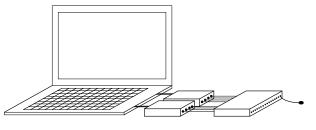

應用訊號分析於刀具頻率響應函數之量測

- ●研究目的
 - ■本文以低成本、客製化且容易操作之雙頻道量測系統需求,開發一套訊號擷取之量測模組。
 - ■以MATLAB程式建立圖形人機介面(Graphic User Interface, GUI),配合訊號擷取卡(USB-9234)進行刀具之頻率響應函數之量測。
- ●研究方法
 - ■首先,將時間域類比訊號輸入經過一段緩衝區,經反假象濾波器濾除高頻雜訊。以取樣控制來決定擷取的時間解析度,由取樣頻率決定取樣時間間隔。
 - ■之後訊號進入數位轉換器,將經過數位轉換器之類比連續訊號描繪轉變為數位訊號。
 - 此數位訊號需再經過加權函數,再利用快速傅立葉轉換將訊號轉換為頻率域訊號。

Case study (1)

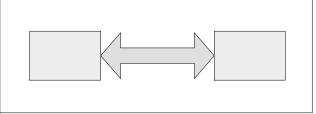
MATLAB GUI 之效益

- ●GUI人機介面之優點
 - ■客製化與操作簡易
 - ▲ 依照不同需求規劃GUI之設定
 - ▲參數設定及量測步驟方便
 - ■檔案輸入、輸出:
 - ▲ 格式化檔案,可讀取所存取之資料
 - ▲ 同步輸出EXCEL檔,便於後續應用
 - ■繪圖功能
 - ▲可顯示時間域與頻率域之量測結果
 - ▲圖示可直接應用於報告撰寫
 - ■加速實驗量測之過程
 - ■減少量測結果轉檔與報告之圖表整理時間


 $\{a(t)\}$

3-12應用MATLAB GUI 於MAFVRO之

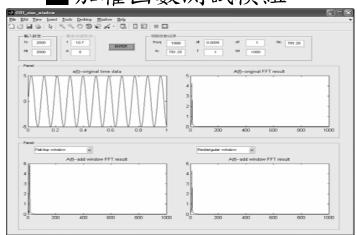
預測分析

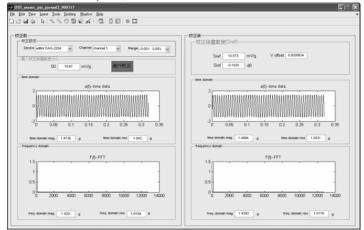

- 目的/背景/動機
 - ■實驗模態分析是目前常用來求得系統之模態參數的方法,但是傳統 EMA有其潛在限制及缺點: {x(t)}
 - ▲ 結構必須處於靜止狀態
 - ▲ 求得系統模態參數之過程繁瑣
 - ▲ 工程應用之設備經費需求高
 - ■發展僅自由振動響應之模態分析(Modal Analysis by Free Vibration Response Only, MAFVRO)方法,以改善傳統EMA之限制。

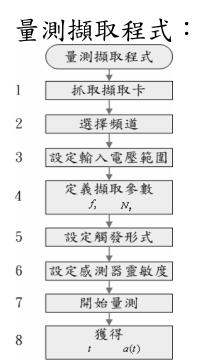
MAFVRO整體儀器架構示意圖

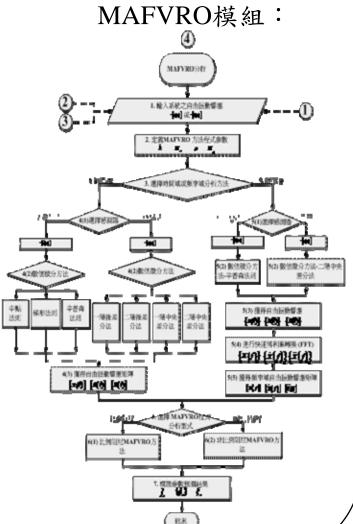
MAFVRO實際儀器架構圖

MAFVRO量測系統概念示意圖

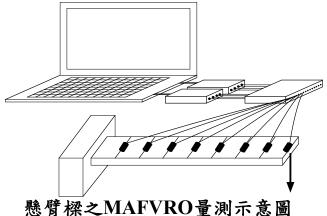

- 挑戰/特色
 - ■利用MATLAB建置加權函數測試模組(GUI)、感測器校正模組(GUI)、量測擷取程式、MAFVRO模組(GUI)

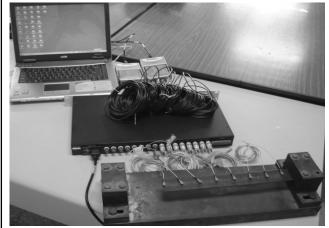



MAFVRO之預測分析


- MATLAB角色
 - ■加權函數測試模組:

■ 感測器校正模組:





MAFVRO之預測分析

● 研究成果

實際懸臂樑之MAFVRO量測圖₁

懸臂樑時間域MAFVRO之模態參數比較表

(A)比例阻尼方法

(B)一般化阻尼方法

			` '				
	mode	Natı	ural frequenc	MAC	MAFVRO		
,	mode	EMA	MAFVRO	Err(%)	MAC	Mode shape	
l	1	17.026	7.026 18.723 9.967109		0.4799		
	2	106.25	107.993	1.640471	0.9611		
	3	297.65	282.094	-5.22627	0.9451		
	4	583.7	572.93	-1.84513	0.8912		

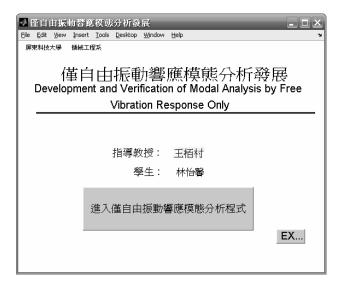
mode	l 1	Natural freq. (Hz)	Dampin	g ratio (%)	MAC	MAFVRO		
mode	EMA	MAFVRO	Err(%)	EMA	MAFVRO	MAC	Mode shape		
1	17.026	16.7731	-1.48538	0.25006	10.052	0.3804			
2	106.25	105.087	-1.09459	0.34415	-0.559312	0.9379			
3	297.65	298.087	0.146817	0.16934	0.609038	0.8050			
4	583.7 582.018		-0.28816	0.24434	0.5946	0.7395			
4	583.7	582.018	-0.28816	0.24434	0.5946	0.7395	$\sqrt{}$		

電腦

懸臂樑頻率域MAFVRO之模態參數比較表

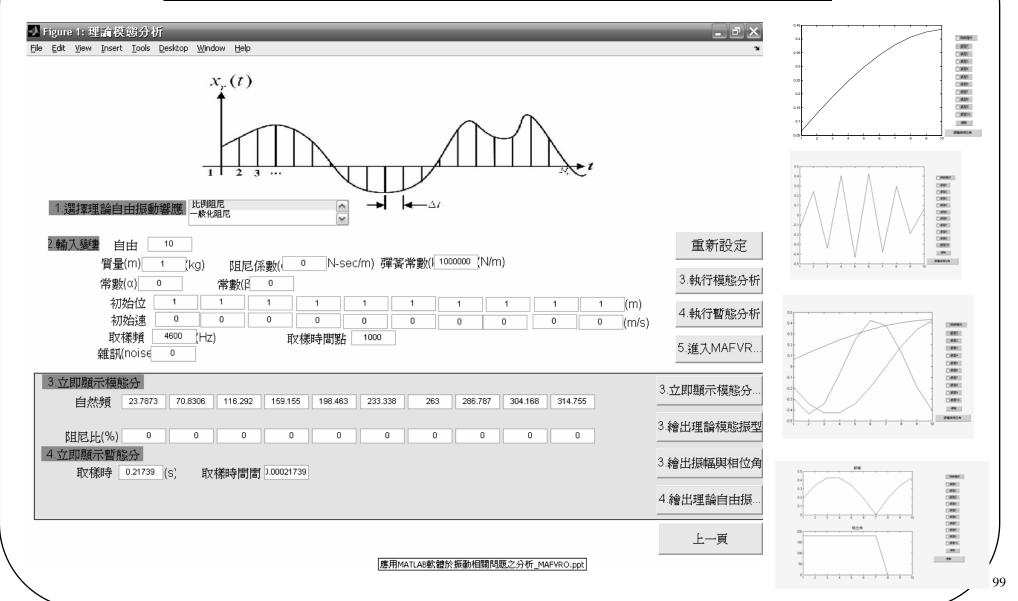
(A)比例阻尼方法

mode	Nati	ural frequenc	MAC	MAFVRO	
mode	EMA	MAFVRO	Err(%)	MAC	Mode shape
1	17.026	19.4872	14.45554	0.3578	
3	106.25	101.199	-4.75388	0.9310	
	297.65	288.15	-3.19167	0.9587	
4	583.7	483.225	-17.2135	0.8566	


(B)一般化阻尼方法

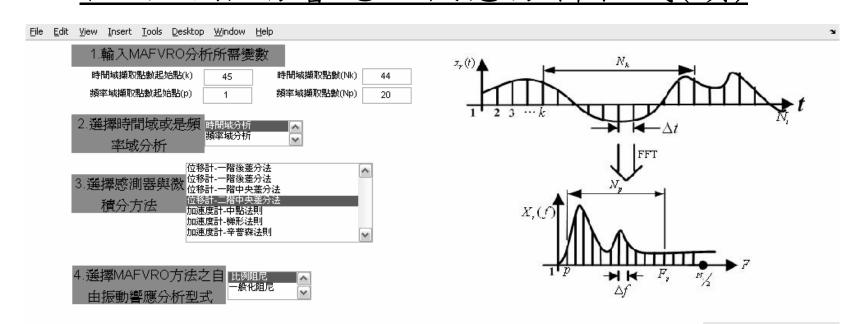
mode	N	latural freq. ((Hz)	Dampin	g ratio (%)	MAC	MAFVRO Mode	
mode	EMA	MAFVRO	Err(%)	EMA	MAFVRO	MAC	shape	
1	17.026	21.0376	23.56161	0.25006	9.06392	0.4109		
2	106.25	106.126	-0.11671	0.34415	0.112189	0.9459		
3	297.65	296.289	-0.45725	0.16934	0.0945104	0.8690		
4	583.7	583.771	0.012164	0.24434	0.779656	0.7233		

僅自由振動響應之模態分析程式



-)	多自	由度.	辰動系	統分	析				
Eil	e <u>E</u> dit	<u>V</u> iew	Insert	<u>T</u> ools	<u>D</u> esktop	<u>W</u> indow	<u>H</u> elp		ĸ
					*M=A		L000 mtr /3 LC		
					捏講	之自由振動	0客應分切		
					實驗	之自由振動	響應分析		
			- -						
								Back	Exit

✔ Figure 1: 理論模態分析 Elle _Edit _View _Insert _Iools _Desktop _Window _Help	- PX
X ₂ (t) 1 選擇理論自由援動響應 Lippen Li	
1	重新設定 3.執行模態分析 4.執行暫態分析 5.進入MAFVR
3.立即顯示模態分 自然頻	3.立即顯示模態分 3.繪出理論模態振型 3.繪出振幅與相位角 4.繪出理論自由振
	上一頁



僅自由振動響應之模態分析程式(續)

僅自由振動響應之模態分析程式(續)

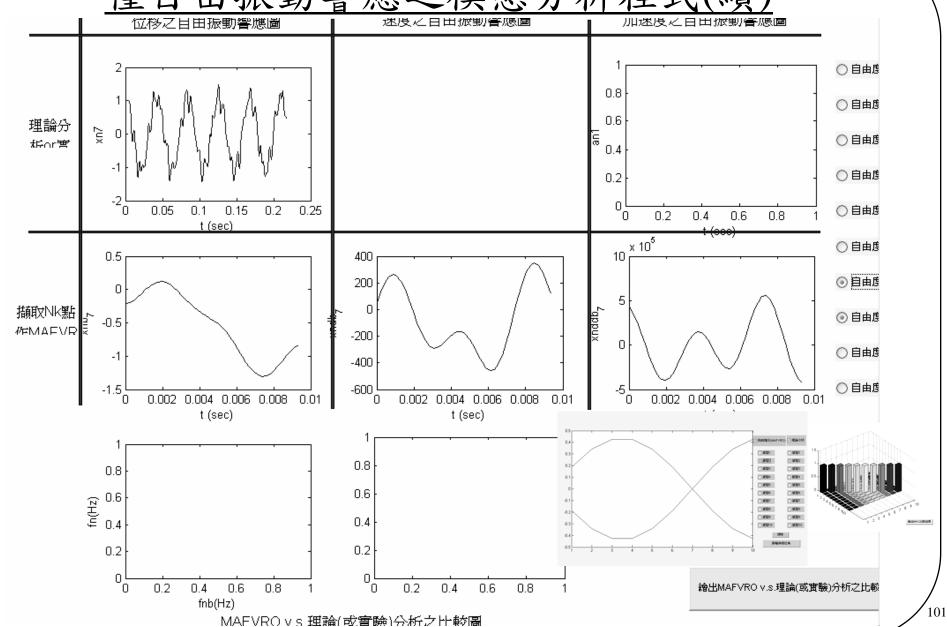
5.立即顯示MAF	5.立即顯示MAFVRO分析結果			頻率域解析頻寬(df)			頻率域取樣頻率(Fp) ~			(Hz)
a.自然頻率(Hz)										
里論 分析	23.7873	70.8306	116.292	159.155	198.463	233.338	263	286.787	304.168	314.755
MAFVRO方法	23.7873	70.8304	116.289	159.143	198.428	233.258	262.856	286.566	303.872	314.404
誤差比	-3.7e-006	-0.00029	-0.0021	-0.0074	-0.018	-0.034	-0.055	-0.077	-0.097	-0.11
b.阻尼比(%)										
連論 分析	0	0	0	0	0	0	0	0	0	0
MAFVRO方法										
誤差比較										
c.模態振型品質保。										
證指標(MAC)	1	1	1	1	1	1	1	1	1	1

執行MAFVRO分析

顯示自由振動響應圖

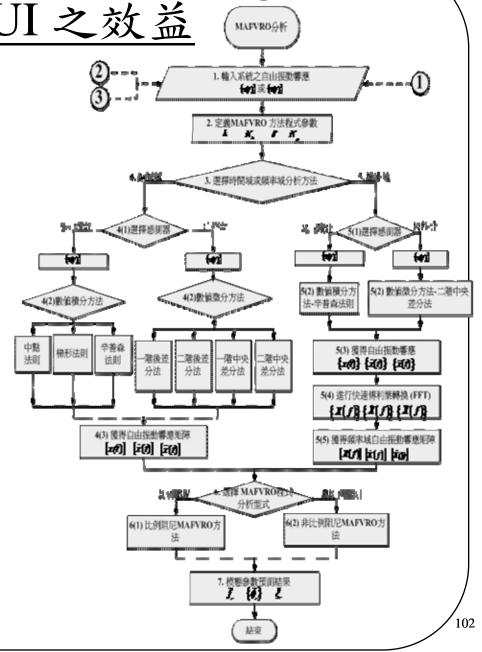
顯示MAFVRO分析之模態振.

顯示MAC比對結果


儲存計算結果至MAFVR

清除計算結果

回主選單



MATLAB GUI 之效益

- GUI人機介面之優點
 - 便於參數化之設定
 - ▲ 取樣頻率(f_s)之設定、時 間點數(N_t)之設定
 - ▲ 時間域/頻率域分析
 - ▲ 不同感測器選擇
 - ▲ 不同微分/積分法則
 - 繪圖功能
 - ▲ 可即時顯示時間域/頻率 域響應
 - ▲ 可即時顯示預測結果之 誤差比較、模態振型圖
 - ▲ 圖示可直接應用於報告 撰寫
 - 加速各種參數變異之分析
 - ■減少報告之圖表整理時間

振動與噪音研究室

4. 結語

- ●經驗分享與建議:
 - 充分了解MATLAB之功能
 - 建立程式方塊流程圖概念
 - ■繪製程式流程圖
 - ■建議之程式發展流程
 - ▲功能分析
 - ▲ I/O規劃
 - ▲ 介面規劃
 - ▲ 變數規劃
- ●本報告透過展示的分析案例,
 - ■可以了解MATLAB軟體功能
 - ■以及提供產學人士在應用MATLAB軟體於振動教學與研究的參考

亞

Thank you for your attention.

敬請指教