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This paper aims to develop the output-only modal analysis technique to overcome some dis-
advantages of conventional experimental modal analysis (EMA), such as the requirement of 
controllable excitation sources, i.e. the impact hammer or shaker, and the limitation of test 
structure in static condition. This work assumes the displacement or acceleration response of 
the structural system due to initial conditions in free vibration can be measured. The dis-
placement, velocity and acceleration response matrices in time and frequency domains can 
then be calculated by numerical methods, respectively. The theoretical approach for modal 
analysis by free vibration response only (MAFVRO) of MDOF system is derived. In particu-
lar, the eigenvalue problem can be formulated from the response matrices and solved for its 
eigenvalues and eigenvectors that can be physically interpreted as the structural modal pa-
rameters. The developed MAFVRO algorithm is applied to the MDOF systems and a cantile-
ver beam structure to obtain structural modal parameters and well validated to show the fea-
sibility of the algorithm. This paper proposes a brand new output-only modal analysis ap-
proach applicable to arbitrary engineering structures and enhances to promote the modal test-
ing technique useful for industrial applications. 

1. Introduction 
Experimental modal analysis (EMA) or modal testing [1, 2] is the well known technique. In 

conventional EMA, the test structure is usually assumed in static. The excitation should be control-
lable and measurable. The impact hammer is frequently used as the actuator and the accelerometer 
as the sensor via a FFT analyzer to obtain the system frequency response functions (FRFs) between 
the output response and the excitation input. Also, the modal parameter extraction method or curve 
fitting technique should be applied to extract the modal parameters from a set of FRFs to determine 
structural modal parameters, including natural frequencies, mode shapes, and modal damping ratios. 

Operational modal analysis (OMA) [3-5], output-only modal analysis (OOMA) [6-8] or natu-
ral input modal analysis (NIMA) [9] is of interest to overcome the disadvantage of EMA. Wang and 
Cheng [10] proposed an algorithm of modal analysis from free vibration response only (MAFVRO). 
Their formulation is limited to the proportional viscous damping base on normal mode analysis. 
The natural frequencies and mode shape vectors for MDOF systems can be successfully obtained. 
This work extends the MAFVRO [10] to general or non-proportional viscous damping cases. The 
complex mode analysis is adopted and thus the natural frequencies, mode shapes and modal damp-
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ing ratios can be determined, simultaneously. Also, the time domain method for MAFVRO [10] is 
extended to the frequency domain method. Both methods are studied and compared for their effec-
tiveness in modal analysis. 

This work derives the algorithm of MAFVRO for both the proportional and non-proportional 
viscous damping models. Section 2 shows the detail development of MAFVRO algorithm for the 
time domain method. Section 3 lays out the approach of MAFVRO in the frequency domain 
method. Section 4 demonstrates the case studies for employing MAFVRO to simulate modal analy-
sis on the MDOF system and a beam structure. 

2. MAFVRO formulation: time domain method 
Consider a MDOF vibration system with viscous damping. The general form of equation of 

motion can be expressed as follows:  
 fKxxCxM =++ &&& . (1) 
The initial conditions are 
 0xx =)0( , (2) 

 0vx =)0(& . (3) 

2.1 Proportional viscous damping model 
For the proportional viscous damping, the following relation holds: 

 KMC βα += . (4) 
For normal mode analysis, let  
 x=X tie ω , (5) 
By the substitution of Eq. (5) into Eq. (1) and the assumptions of f=0 and C=0, the generalized ei-
genvalues problem can be formulated: 
 KX= 2ω MX. (6) 
or   
 XKXM 1 2ω=− . (7) 
By solving the above equation, n-pairs of eigenvalues 2

rω  and eigenvector rX  can be obtained. 
Physically,  rr fπω 2=  is the r-th natural frequency, and  rX = rφ   is its corresponding mode shape 
vector. 

The following derivation is partly adopted from Wang and Cheng [10]. This work is to deter-
mine modal parameters, including natural frequencies rω  and mode shape  rφ , from the free vibra-
tion response, i.e, 0f(t) = . For the proportional viscous damping model without the prescribed 
force, the system equation becomes  
 0KxxK)M(xM =+β+α+ &&& . (8) 
Rearrange the above equation 
 )()( xxKxxM &&&& β+−=α+ . (9) 
Then  
 11 )x)(xxx(KM −− β+α+−= &&&& . (10) 

By comparing Equations (10) and (7), one can conclude that if the system response x , x&  and 
x&&   are known, KM 1−  can be formulated and used to solve for the eigenvalues and eigenvectors, i.e. 
the normal modes of the system. Consider the system displacement response matrix as follows: 
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where ( )krkr txx =,  denotes the displacement of the r-th DOF at time kt . Similarly, the system ve-
locity and acceleration response matrix can be defined  

 X& = [ ] { } { } { }[ ]T11 −++=
kNkkk xxxX &L&&& , (12) 

 X&& = [ ] { } { } { }[ ]T11 −++=
kNkkk xxxX &&L&&&&&& . (13) 

Eq. (10) can then be rewritten as follows: 
 11 ))(( −− +βα+−= TTTT XXXXKM &&&& . (14) 

2.2 Non-proportional viscous damping model 
For the general or non-proportional viscous damping, the following equilibrium equation is 

invoked: 
 0=− xMxM && . (15) 
By combining Eqs. (1) and (15), the system equation can rewritten as follows: 
 PByyA =+&  (16) 
where 
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Let 
 tie λYy = . (18) 
By the substitution of above Eq. into Eq. (16) and the assumption of zero external force vectors 
f =0, i.e. P =0, the eigenvalue problem can be formulated as follows: 
 AYBY λ−=  (19) 
or 
 YYBA λ=− − )( 1 . (20) 
By solving the above equation, 2n pairs of complex conjugate eigenvalues and their corresponding 
eigenvectors can be obtained: 

 n r
λ
λ

rr

rr ,...,2,1 , ** =
⎩
⎨
⎧

→
→

Y
Y

 (21) 

where 

 2
* 1 rrrrme
r

r i iIR
λ
λ

ζωωζ −±−=±= . (22) 

The equivalent natural frequency and modal damping ratio can be determined: 

 22
mer IR +=ω  (23) 
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where rr fπω 2= , rζ  and  rφ = rX  are the r-th natural frequency, modal damping ratio and dis-
placement mode shape vector, respectively. The bar symbol is to denote the solutions from the 
complex mode analysis, in particular for the non-proportional viscous damping. 

Similar to the derivation of the proportional viscous damping for MAFVRO, the system equa-
tion in Eq. (16) without the prescribed force, i.e.  P =0, is as follows: 
 0ByyA =+& . (26) 
One can obtain 
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From the definition of the system displacement, velocity and acceleration response matrices as 
shown in Eqs. (11)-(13), the above equation become 
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By comparing Eqs. (20) and (28), one can see that if the system response matrices are known,   
BA 1−−  can be formulated and used to solve the eigenvalues and eigenvectors. Therefore, the sys-

tem modal parameters as shown in Eqs. (23)-(25) can be obtained. This approach is the main idea of 
MAFVRO for the non-proportional viscous damping.  

If the displacement sensor is used to measure the system displacement response, ( ) krkr xtx ,= , 
as illustrated in Fig. 1, the velocity and acceleration can be determined by finite difference method. 
Wang and Cheng [10] showed detail matrix operation among response matrices. If the accelerome-
ter is used, the acceleration at each DOF ( ) krkr xtx ,&&&& =  can be measured. The numerical formula can 
be adopted to evaluate the velocity and displacement, respectively. Therefore, Eqs. (14) and (28) 

pNp +

f

FFT

tN

kT N t= Δ

fΔ

tΔ

/ 2kN

t

kNk +

p

k

( )rX f

( )rx t

p pf N f= Δ

 
Figure 1. Diagram for the time and frequency domain response. 
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can be obtained from the free vibration response and solved for modal parameters, rω  and rφ . 

3. MAFVRO formulation: frequency domain method 
Section 2 shows the MAFVRO algorithm in the time domain. This section will illustrate the 

formulation of MAFVRO in the frequency domain. From Eqs. (11)-(13), the time domain response 
matrices can be measured or numerically determined. The basic idea is to determine the Fourier 
spectrum of the system responses. For example, the r-th DOF time domain data ( )txr  can be theo-
retically performed Fourier transform as follows: 
 )]([)( txfX rr F=  (29) 

where F  denotes the Fourier transform operator. )( fX r  denotes the Fourier spectrum of ( )txr . Fig. 
1 shows the diagram of discrete time and frequency domain response. Similar to Eq. (11), the sys-
tem displacement Fourier spectra response matrix can be written as follows: 
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where p and pN  are the start number and end number of the frequency domain data used to formu-
late the response matrix. Similarly, the velocity and acceleration Fourier spectra can also be ob-
tained. Therefore, the Fourier spectra response matrices for displacement, velocity and acceleration 
can be easily substituted into Eqs. (14) and (28) to formulate the eigenvalue problems for both the 
proportional and non-proportional viscous damping models. 

From Fig. 1, assuming that kN  time data are used and starting from k point, the corresponding 
Fourier spectrum )( fX r  can be revealed in Fig. 1. The relations of those variables in Fig. 1 are 
summarized as follows: 

 1 1= =
k

f
T N t

Δ
Δ

, (31) 

 nyq =
2 2

s kf N ff Δ
= . (32) 

where fΔ  is the frequency resolution. T  is the time period for taking numerical Fourier transform.   

sf  and nyqf  are the sampling frequency and Nyquist frequency, respectively. For formulating the 
MAFVRO algorithm in the frequency domain method, both Eqs. (14) and (28) for the proportional 
and non-proportional viscous damping models can be simply replaced by the frequency domain 
data. To implement the algorithm, let those frequency data from p  to pp N+  to be chosen such 
that the frequency range is p pf N f= Δ . 

4. Results and Discussions 
This section will employ the developed MAFVRO algorithms in both the time and frequency 

domain methods for both the proportional and non-proportional viscous damping models to obtain 
the structural modal parameters via simulation data.  
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The main difference for the proportional and non-proportional viscous damping models for 
MAFVRO algorithms is that the proportional model is truly the normal mode analysis, while the 
non-proportional model is the complex mode analysis. Tables 1(a) and 1(b) shows the modal pa-
rameters prediction results for a 3-DOF and 10-DOF systems, respectively, via the non-proportional 
viscous damping model for the frequency domain method. The predicted errors for natural frequen-
cies and damping ratios are quite small, and the modal assurance criterion (MAC) matrix for the 
comparison of theoretical and MAFVRO predicted mode shape vectors reveals a unity matrix. Re-
sults show the MAFVRO can successfully obtain the modal parameters correctly. The feasibility of 
MAFVRO via the frequency domain method for the non-proportional viscous damping model is 
demonstrated. 

The time domain method of MAFVRO via the proportional viscous damping model is previ-
ously demonstrated [10]. This work shows the merit of the frequency domain method of MAFVRO 
as well as the non-proportional viscous damping models. Tables 2 and 3, respectively, show the 
modal parameters prediction results for both the proportional and non-proportional models via the 
time and frequency domain methods, respectively. It is noted that the signal noise ratio (SNR) is 
assumed as SNR=15% and 18% as noted in the tables. The discussions are as follows: 

1. From Table 2 for the proportional model, the time domain method results in up to 20% of 
errors for natural frequency predictions, while the frequency domain method largely im-
prove the prediction errors within 2%. 

2. For the non-proportional model shown in Table 3, the time domain method reveals high 
prediction errors for natural frequencies. On the contrary, the frequency domain method re-
sults in the maximum error within 2% for SNR=18%. The frequency domain method can 
appropriately accommodate the high SNR conditions. 

3. For damping ratio prediction, the proportional model is not supported. The non-proportional 
model shows the reasonable range of prediction. The errors of predicted damping ratios are 
mainly due to the high level of SNR. 

4. The mode shape predictions for both models are satisfactory well. It should be noted that the 
predicted mode shape vectors are real for the proportional model and complex for the non-
proportional model.  

By applying the developed MAFVRO algorithms to a beam structure, the free vibration re-
sponse of the beam should be measured in some grid points over the beams. The thin beam model is 
assumed to obtain the free vibration response for simulation purpose. Assuming there are 14 points 
along the beam length to measure the beam response, i.e. m=14. Therefore, the number of DOFs 
becomes n=m. 

Table 1. Modal parameters prediction results for MDOF systems. 
(a) 3-DOF system 

Mode 1 2 3 MAC plot 
TMA 70.8306 198.4630 286.7872

MAFVRO 70.8305 198.4507 286.7103rf
Error(%) -0.0001 -0.0062 -0.0268

TMA 0.0242 0.0436 0.0194 
MAFVRO 0.0242 0.0435 0.0194 rζ
Error(%) -0.0004 -0.0247 -0.1068

1

2

3

0

0.5

1

1.5

  
(b) 10-DOF system 

Mode 1 2 3 4 5 6 7 8 9 10  MAC plot
TMA(Hz) 23.7873 70.8306 116.2917 159.1550 198.4630 233.3377 262.9999 286.7873 304.1682 314.7546 

MAFVRO(Hz) 23.7873 70.8305 116.2908 159.1509 198.4507 233.3101 262.9500 286.7103 304.0651 314.6324 rf  
Error(%) -0.0000 -0.0001 -0.0007 -0.0026 -0.0062 -0.0118 -0.0190 -0.0268 -0.0339 -0.0388 
TMA(%) 0.0028 0.0081 0.0121 0.0143 0.0145 0.0129 0.0100 0.0065 0.0032 0.0008 

MAFVRO(%) 0.0028 0.0081 0.0121 0.0143 0.0145 0.0129 0.0100 0.0065 0.0032 0.0008 rζ  
Error(%) 0.0001 -0.0004 -0.0029 -0.0102 -0.0247 -0.0470 -0.0757 -0.1068 -0.1348 -0.1545 

 

Note: k =5, kN =100, p =1, pN =20, fΔ =60 Hz, pf =1200 Hz, sf =6000Hz, tN =1000, 1=1 (N s/m)c ⋅ , 

2 3= =0 (N s/m)c c ⋅ , SNR=0 (%) 
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By considering a steel cantilever beam, both the proportional and non-proportional models are 
adopted to demonstrate the feasibility of MAFVRO algorithms for the continuous structure applica-
tions. Table 4(a) shows the prediction results for the proportional model, either the natural frequen-
cies or mode shape predictions are very well. The maximum errors for natural frequencies are 
mostly within 1%, and the MAC values between the predicted and theoretical mode shapes are 
nearly close to 1.For the non-proportional model as shown in Table 4(b), both natural frequencies 
and mode shapes also reveals very good predictions, although the damping ratios may reveal high 
errors or even unreasonable negative values. In practical EMA, the most difficult part is to identify 
the structural mode shapes. The presented MAFVRO algorithm does provide an effective way to 
obtain the modal parameters from only the free vibration response. 

Table 2. Comparison of modal parameters prediction results for proportional viscous damping of 
MAFVRO by displacement sensors. 

(a) Time domain method 
MAFVRO 

method System model 
Theoretical

natural 
freq. (Hz)

Predicted
natural 

freq. (Hz)

Error of  
natural freq. (%)

Theoretical
damping 
ratio (%) 

Predicted 
damping  
ratio (%) 

Error of  
damping  
ratio (%) 

70.8306 74.6321 5.3670 2.2252 - - 
198.4630 228.2450 15.0063 6.2349 - - 

proportional 
viscous 
damping 286.7873 357.7089 24.7297 9.0097 - - 

70.8306 70.9244 0.1323 0.0242 - - 
208.7925 208.7925 5.2048 0.0436 - - 

proportional 
viscous 
damping non-proportional 

viscous 
damping 286.7872 306.6965 6.9422 0.0194 - -  

Note: k =5, kN =100, sf =2500Hz, tN =1000, α =0.0001, β =0.0001, SNR=15 (%) 
(b) Frequency domain method 

MAFVRO 
method System model 

Theoretical
natural 

freq. (Hz)

Predicted
natural 

freq. (Hz)

Error of  
natural freq. (%)

Theoretical
damping 
ratio (%) 

Predicted 
damping  
ratio (%) 

Error of  
damping  
ratio (%) 

70.8306 72.2006 1.9342 2.2252 - - 
198.4630 202.9156 1.2436 6.2349 - - 

proportional 
viscous 
damping 286.7873 288.5167 0.6030 9.0097 - - 

70.8306 69.4525 -1.9457 0.0242 - - 
198.4630 198.3673 -0.0482 0.0436 - - 

proportional 
viscous 
damping non-proportional 

viscous 
damping 286.7872 282.4861 -1.4998 0.0194 - -  

Note: k =5, kN =100, p =1, pN =20, fΔ =25 Hz, pf =500 Hz, sf =2500Hz, tN =1000, α =0.0001, 
β =0.0001, SNR=15 (%) 

Table 3. Comparison of modal parameters prediction results for non-proportional viscous damping of 
MAFVRO by displacement sensors. 

(a) Time domain method 
MAFVRO 

method System model 
Theoretical

natural  
freq. (Hz)

Predicted
natural 

freq. (Hz)

Error of  
natural freq. (%)

Theoretical
damping 
ratio (%) 

Predicted 
damping  
ratio (%) 

Error of 
damping 
ratio (%) 

70.8306 71.3428 0.7231 2.2252 3.4737 56.1059 
198.4630 229.0680 15.4210 6.2349 6.8150 9.3037 

proportional 
viscous 

damping 286.7873 370.7638 29.2818 9.0097 1.6238 -81.9770 
70.8306 73.6255 3.9459 0.0242 1.8021 7355.4 
198.4630 210.4340 6.0319 0.0436 -0.1487 -441.4 

non-proportional 
viscous 
damping non-proportional 

viscous 
damping 286.7872 320.3666 11.7088 0.0194 0.1528 688.1  

Note: k =5, kN =100, sf =2500 Hz, tN =1000, 1=1 (N s/m)c ⋅ , 2 3= =0 (N s/m)c c ⋅ , SNR=18 (%) 
(b) Frequency domain method 

MAFVRO 
method System model 

Theoretical
natural 

freq. (Hz)

Predicted
natural 
freq. 
(Hz) 

Error of  
natural freq. 

(%) 

Theoretical
damping 
ratio (%) 

Predicted 
damping  
ratio (%) 

Error of 
damping 
ratio (%) 

70.8306 70.9339 0.1458 2.2252 0.7784 -65.0186 
198.4630 202.0860 1.8256 6.2349 4.3767 -29.8040 

proportional 
viscous 
damping 286.7873 281.2662 -1.9252 9.0097 7.0120 -22.1725 

70.8306 70.1896 -0.9050 0.0242 0.2426 903.5082 
198.4630 199.5359 0.5406 0.0436 -0.2599 -696.6929 

non-proportional 
viscous 

damping non-proportional 
viscous 
damping 286.7872 287.1032 0.1102 0.0194 0.1776 815.9760  

Note: k =5, kN =100, p =1, pN =20, fΔ =25Hz, pf =500Hz, sf =2500Hz, tN =1000, 1=1 (N s/m)c ⋅ , 

2 3= =0 (N s/m)c c ⋅ , SNR=18 (%) 
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Table 4. Modal parameter prediction for the cantilever beam. 
(a) Proportional model 

Natural frequency (Hz) mode TMA MAFVRO Err(%) MAC Mode 
shape 

1 16.328 16.367 0.23924 1 
0 2 4 6 8 10 1 2 14

0

0 .5

1

1 .5

2

2 .5

3

3 .5

4

4 .5

 
2 102.33 102.32 -0.004671 1 

0 2 4 6 8 1 0 1 2 1 4
- 5

- 4

- 3

- 2

- 1

0

1

2

3

4

 
3 286.52 290.07 1.2392 0.99841 

0 2 4 6 8 1 0 1 2 1 4
- 3

- 2

- 1

0

1

2

3

4

5

 
4 561.47 561.79 0.056622 1 

0 2 4 6 8 1 0 1 2 1 4
- 5

- 4

- 3

- 2

- 1

0

1

2

3

4

 
5 928.15 927.89 -0.027653 1 

0 2 4 6 8 1 0 1 2 1 4
- 3

- 2

- 1

0

1

2

3

4

5

 
6 1386.5 1386.1 -0.030038 1 

0 2 4 6 8 1 0 1 2 1 4
- 5

- 4

- 3

- 2

- 1

0

1

2

3

4

 
7 1936.5 1935.9 -0.029011 1 

0 2 4 6 8 1 0 1 2 1 4
- 4

- 3

- 2

- 1

0

1

2

3

4

5

 
8 2578.2 2577.4 -0.030727 1 

0 2 4 6 8 1 0 1 2 1 4
- 5

- 4

- 3

- 2

- 1

0

1

2

3

4

 
9 3311.5 3310.5 -0.031196 1 

0 2 4 6 8 1 0 1 2 1 4
- 4

- 3

- 2

- 1

0

1

2

3

4

5

 
10 4136.6 4135.1 -0.034916 1 

0 2 4 6 8 1 0 1 2 1 4
- 5

- 4

- 3

- 2

- 1

0

1

2

3

4

 
11 5053.3 5050.6 -0.052775 1 

0 2 4 6 8 1 0 1 2 1 4
- 4

- 3

- 2

- 1

0

1

2

3

4

5

 
12 6061.6 6057.5 -0.0679 1 
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(b) Non-proportional model 
Natural freq. (Hz) Damping ratio (%) mode TMA MAFVRO Err(%) TMA MAFVRO Err MAC Mode 

shape 
1 16.328 16.432 0.63571 0.487 -0.16015 -132.89 0.99987
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5. Conclusions 
This work mainly extends the MAFVRO algorithm from the time domain method [10] to the 

frequency domain method. Both the proportional and non-proportional viscous damping models are 
developed for the MAFVRO algorithms. The proportional model is truly the normal mode analysis, 
while the non-proportional model is the complex mode analysis which is more appropriate for the 
need of practical structural modal analysis. In this paper, the applications of MAFVRO algorithm to 
the MDOF system and a beam, i.e. the continuous structure, are demonstrated for the potential and 
feasible use in experimental modal analysis. The modal parameters can be successfully predicted by 
the MAFVRO algorithm. This work enhances the modal analysis technique by using the free vibra-
tion response only. 
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