

I. Introduction (Cont'd)

- Possible objectives for vehicle dynamic analysis:
 - obtain physical insight of mathematical model behavior
 - Explore component design concept
 - Evaluate vehicle design

- Compare with a test on vehicle
- Perform safety evaluation
- Conduct accident analysis

III. Issues to know

國立屏東科技大學 💦 🍋

- 3.1 Vehicle Riding Model
- 3.2 Road Model
- 3.3 Ride Quality Parameters
- 3.4 Ride Comfort Criterion
- 3.5 Solution of Vibration System

3.2 Road Model 3.2.2 Half-Sine Bump

3.4.1 Overview of ISO 2631-1 (1997) The effect of vibration on human comfort is evaluated by using the frequency weighted

r.m.s. acceleration.

(a) Principal weightings (b) Additional weightings

3.3 Ride Quality Parameters

 $[M]{\dot{x}} + [C]{\dot{x}} + [K]{x} = [C']{\dot{y}} + [K']{y}$ 1. Driver/passenger acceleration

3.4.1 Overview of ISO 2631-1 (1997)

Frequency-weighting functions recommended for the various directions are as follows.

3.4.1 Overview of ISO 2631-1 (1997)

Frequency-weighting functions recommended for the various directions are as follows.

Multiplying Factor k

1

Frequency Weighting

W

W

 W_{i}

23

Comfort evaluation (0.5-80Hz)				
Human Body Position	Measurement Location	Axis	Multiplying Factor k	Frequency Weighting
Seated	Seat surface	x	1	W _d
		У	1	W _d
		z	1	W_k
		r _x	0.63 m/rad	W _e
		- <i>r</i> _y	0.4 m/rad	W,
		r _z	0.2 m/rad	W _e
	Seat backrest	x	0.8	W _c
		У	0.5	W
		z	0.4	W _d
	Feet	x	0.25	W_k
		У	0.25	W_k
		z	0.4	W_k

17

III. Issues to know

- ▲ 3.1 Vehicle Riding Model
- 3.2 Road Model
- 3.3 Ride Quality Parameters
- 3.4 Ride Comfort Criterion
- 3.4.1 Overview of ISO 2631-1 (1997)
 - ▲ Evaluation indices
 - Comfort evaluation procedure
 - 3.4.2 Comfort evaluation in ISO 2631-1 (1985)
- 3.5 Solution of Vibration System

3.4 Ride Comfort Criterion

- International Organization for Standardization, 1997, ISO 2631-1. Mechanical Vibration and Shock - Evaluation of Human Exposure to Whole-Body Vibration. Part 1: General Requirements. Geneva.
- International Organization for Standardization, 1985, ISO 2631-1. Evaluation of Human Exposure to Whole-Body Vibration. Part 1: General Requirements. Geneva.
- British Standards Institution BS 6841, 1987, Measurement and Evaluation of Human Exposure To Whole-Body Mechanical Vibration. London.

3.4.1 Overview of ISO 2631-1 (1997)

- For comfort evaluation, the r.m.s. value of the frequency weighted acceleration can be compared with the guidance shown below.
- Approximate indications of likely reactions to various magnitudes of overall vibration total values in public transport as stated in ISO 2631-1 (1997).

Weighted vibration magnitude	Likely reaction in public transport		
(sum of three axes)			
Less than 0.315 m/s ²	Not uncomfortable		
0.315 m/s ² to 0.63 m/s ²	A little uncomfortable		
0.5 m/s ² to 1 m/s ²	Fairly uncomfortable		
0.8 m/s ² to 1.6 m/s ²	Un comfortable		
1.25 m/s ² to 2.5 m/s ²	Very uncomfortable		
Greater than 2 m/s ²	Extremely uncomfortable		

Standing position

Siles

國立

al Piristure Univer

0

Supporting 1 W, area (under the pelvis W 1 Recumben W except head W head ٢

Axis

x

y

z

Measurement Location

Floor

Human

Body

Standing

Positio

科技大學

 $\mathbf{A}_{1}(t)$

↓ y(t)

57

4.3 Ride Quality Parameter: **Driver/passenger acceleration**

- To comply with the ISO 2631-1, the r.m.s. $x_3(t)$ acceleration at each one-third octave band Γ m_3 shall be obtained. $x_2(t)$
- The r.m.s. value of acceleration in each onethird octave band is determined by:

 $\ddot{x}_{3,i-1/3-r.m.s.} = \int_{f}^{f_u} G_{\ddot{x}_3\ddot{x}_3}(f) df$

y (Hz)

- where $\blacksquare f_u$, f_l are the upper and lower bounds of the one-third octave band with central
 - frequency f_c , respectively.
- $\vec{x}_{3,i-1/3-r,m,s}$ denotes the r.m.s. acceleration of $\ddot{x}_3(t)$ corresponding to the i-th central frequency.

4.4 Assessment of Ride Comfort: Driver/passenger acceleration

For adopting ISO 2631-1 (1985), the r.m.s. accelerations $\frac{\ddot{x}_{3,i-1/3-rm.s.}}{3}$ at the 1-th central frequency are plotted over the frequency range to compare with the "reduced comfort boundary".

4.4 Assessment of Ride Comfort: Driver/passenger acceleration

For adopting ISO 2631-1 (1997), the single value of r.m.s. acceleration is calculated by:

4.4 Assessment of Ride Comfort: Driver/passenger acceleration For adopting ISO 2631-1 (1997), the single value of r.m.s. acceleration is compared with ISO 2631-1 (1997) $x_3(t)$ 10 m_3 unweighted a_{wz,r.m.s.} = 0.36349 (m/s²) 10 $x_2(t)$ W_k weighted $a_{wz,r.m.s.} = 0.20783 \text{ (m/s}^2)$ m_2 10 (m/s²) $k_s \notin \square c_s$ ∞10⁻³ E $\mathbf{A} x_1(t)$ m_1 ¹²10 = 0.3635 (m/s²) unweighted $a_{3,r.m.s.} = 0.3635 \text{ (m/s}^2)$ W_k weighted $a_{3w,r.m.s.} = 0.2078 \text{ (m/s}^2)$ **↓** *y*(*t*) 10 unweighted W_k weighted -0-10 102 圆立屏東科技大學 03 10 10¹ Frequency (Hz) 4 T-

V. Conclusions

- Analytical approach for Vehicle Ride Comfort Analysis is presented.
 - Vehicle Riding Model
 - Road Model
 - Ride Quality Parameters
 - Ride Comfort Criterion
- The solution of vibration system for four types of analyses regarding to ride quality analysis is illustrated.
- An examples of vehicle ride comfort analysis to assess a 3-DOF Quarter Car Model is shown.

Thank you for your attention.

