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Abstract

In general, damping effect can not be theoretically
determined. However, modal damping ratios can be
obtained via experimental modal testing. This paper
presents two methods to include damping effect into the
theoretical model base on the experimentally determined
damping data. First, the proportionally, viscously
damped model is assumed. The optimization problem is
formulated to determine two optimum constants related
to mass and stiffness matrices with the known
experimental modal damping ratios, and so forth the
proportional, viscous damping matrix can be determined
from these two constants. Second, the accumulated
averaged damping ratio can be obtained from the
experiments and adopted to define the constant modal
damping ratio for the analytical model. Several case
studies are presented to show the implement of damping
effect in theoretical analysis such that the analytical
model can be more practically simulated in accordance
with the experimental test results. The developed
methodology is easy to implement and applicable to
finite element analysis for arbitrary structures.

Keywords: experimental modal testing, viscously
damped model, optimization problem, accumulated
averaged damping ratio, proportional damping.

Nomenclature
c, r" modal damping

] viscous damping matrix
r"™ modal stiffness
stiffness matrix
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m, r" modal mass

[M]  mass matrix

{X,}  r"™ mode shape vector

[X]  modal matrix

a ., proportional damping constants

6.} r" mass matrix normalized mode shape vector
[¢r] r" mass matrix normalized modal matrix

o, r" undamped natural frequency
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& r" damping ratio

& r" experimental damping ratio

1. Introduction

Structural damping ratios can be determined via
experimental modal analysis (EMA) by extracting the
modal parameters from frequency response functions
(FRFs). By using either the simple approach such as
half-power-point method or complicated curve-fitting
algorithms, the modal damping ratios can be obtained
and applied to theoretical simulation. If the theoretical
model is solved by modal domain approach, the
experimentally determined modal damping data can be
easily applied to individual mode. However, in practical
engineering structures are complicated and required
commercial software to perform theoretical response
simulation. The modal domain solution technique is not
generally supported by software. How to implement the
damping effect in theoretical model base on the
experimental damping data is a practical engineering
issue.

Adhikari [1] proposed the damping identification
method that adopting the extracted natural frequencies
and modal damping ratios to formulate the damping
matrix. The damping matrix is functions of mass and
stiffness matrices as well as the modal frequencies and
damping  ratios.  The  damping  matrix is
frequency-dependence and so complex that the damping
matrix can be difficult to apply in commercial software
application. This work proposes the two approaches that
can be implemented in commercial codes. One is the
constant damping ratio method, and the other is constants
a and g that are related to mass and stiffness

matrices, respectively. Gounaris and Anifntis [2]
suggested the use of complex modulus of elasticity
including loss factor for damping simulation. They used
the iteration approach in obtaining structural stresses
from both finite element (FE) model and experiments,
respectively, by modifying damping values. When the
stresses agree to each others, the applied damping ratios
can be representative for the structure. This approach
may not be practical for most engineering applications.
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In modeling material damping, Vantomme [3]
adopted the energy balance approach to characterize the
damping contributions due to matrix, fiber material, and
the interface effects for fiber-reinforced plastics samples.
Wang et al. [4] applied EMA technique to obtain and
validated the mechanical properties of golf club head
materials including their material damping ratios. Horr
and Schmidt [5] presented a non-linear damping
modeling technique to characterize a viscoelastic
structural damper and can accurately predict the
frequency-dependence damping properties for all
structural members and dampers.

This work presents the practical approach by using
the experimental damping ratios to be implemented in
theoretical analysis, in particular for commercial FE
codes. Two methods are proposed, and three types of
practical structures are studied by the proposed methods
to conduct the FRF simulations and validations.
Therefore, further response simulation can be followed
base on the FE model with damping effect implemented.

2. Theoretical Analysis

The  system  equation for a  multiple
degree-of-freedom vibration system can be as follows:

[M]{x}+ [Cc]ix}+[K]{x}= {f ()} (1)
In particular, for proportional damping, one can assume
that:

Cl=am]+plK] )
where o and g are some constants.

By performing theoretical modal analysis, the
normal modes of the system can be solved, therefore, the

r" modal parameters, including natural frequencies
(w,), mode shape vectors ({X,}), and damping ratios
(&,) can be obtained. The modal matrix can then be
defined as follows:

[X]=[{X X e X ] (3)

The orthogonality properties of mode shape vectors in
matrix form can be obtained as follows:

[XTM][x]=['m, ] @
[XTlelx]=["c. ] )
[XT[K]x]=[. ] O]
where m_, c,, and k, can vary and be dependent on

the choice of scalable mode shape vector {X,}, and,

therefore, and redefines the mode shape vectors as
follows:

{¢,}=ﬁ{xr} @

{¢,} is termed the mass-matrix normalized mode

shape vector, and the corresponding modal matrix can be
defined as follows:

[¢]=[l¢.} 16} 18, ] 8)
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The orthonormality properties of mode shape vector can
then be expressed:

I MIlp]=1".] ©

eI lclisl=['2¢,] (10)
I [K]lp)=[ o7, (12)
where
__a  po
o= 20, i (12)

and & isthe r" modal damping ratio that is functions
of modal natural frequency (e, ) and two constants (« ,

B).

In theoretical analysis, the modal damping ratio
can be well defined; however, it must be determined
from the experiments for the real structure. This paper
will address the definition of damping effect in
theoretical analysis according to the experimental
measurement of damping ratios.

3. Simulation of Damping Effect in Analysis

The structural damping ratios can be experimentally
determined via experimental modal testing. For examples,
when n modes are obtained, there will be n modal
damping ratios. Ideally, one can employ these modal
damping ratios for structural response analysis by modal
domain analytical approach. However, in practice
complicated structures are generally performed analysis
by commercial finite element code, such as ANSYS
software.

There are two ways to implement damping effect in
ANSYS software as follows:

(1) Define constants « and g : Both constants

are as defined in Equation (2). The proportional
damping effect is assumed. The damping effect
can be implemented in solution accordingly.
The commands for setting o« and g in

ANSYS are “ALPHAD” and “BETAD.”

(2) Define constant modal damping ratios: The
command is “DMPART.” For the case, all of the
modal damping ratios are assumed to be the
same. This results in different ¢ and g for

each mode.
The question here is how to apply experimentally

determined modal damping ratios (5,) to the response

simulation in software without losing the generic nature
of damping from experimental results. For the above two
approaches in defining damping effect, the proposed
strategy is as follows.

3.1 Define constants « and S
In order to find a set of the two constants that can
best simulate the damping effect according to the

experiments. The optimization problem is formulated as
follows:
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Tablel Simulation results of damping effects for Cantilever Beam

. : Predicted Damping ratio
Mode Natural frequency (Hz) Experlmerr:tail(I)Damplng o =1.3477 Error (%)
B =6.9237x10"
1 17.2 0.582% 0.627% 7.84
2 108 0.124% 0.123% -0.91
3 303 0.097% 0.101% 4.00
4 594 0.160% 0.147% -8.22
5 988 0.217% 0.226% 4.12
Averaged — 0.236% 0.245% 3.74%
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(1) Design variable: a, g
(2) Obijective functions:

(e, B)= % (géfJ 13)

where 99, is the experimental modal damping ratio, and
& is the optimized predicted modal damping ratio
according to Equation (12) that is functions of « and
£ as well as the modal frequency ( w, ). The objective is
to optimally determine the set of « and g such that

the objective function, which is defined as the sum of
square errors between the predicted and experimental
damping ratios, is minimum. Therefore, the optimum set
of ¢ and B can be implemented in software

simulation.
3.2 Define constant modal damping ratio

From the experiments, there can be n modes of
damping ratios. The constant damping ratio to be applied
can be defined as the accumulated average of all modes
as follows:

g== (14)

This section provides the practical implement of
damping effect in response simulation according to
experimentally determined damping ratios.
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4. Case Study Results and discussions

This section will present the theoretical simulation of
frequency response function (FRF) by adopting the
above mentioned damping implement approaches for
different materials and structures, including a steel
cantilever beam, a carbon fiber-reinforced composite
plate in free boundary, and a print circuit board (PCB) in
fixed condition.

4.1 Steel Cantilever Beam

Figure 1 shows the experimental setup for the steel
cantilever beam performed by conventional modal testing.
There are 5 modes up to 1000 Hz. Table 1 shows
experimental natural frequencies and damping ratios. The
averaged damping ratio is 0.236% that can be used to
define the constant damping ratio. Also, according to the
formulated optimization problem in Equation (13), the
optimal constants are «=13477 and the

B =6.9237x107 . The predicted damping ratios and

their corresponding errors with respect to the
experimental ones are also revealed in Table 1.

The damping effects by using constant damping
ratio £=0.236% and setting both « and f are

implemented into finite element model, respectively, as
shown in Figure 2. The beam model is constructed by
linear hexahedron elements (solid 45) in ANSYS
software. The FRF plots are shown in Table 1 as well and
discussed as follows:
(1) Different damping effects do affect the FRF,
especially near the resonance peaks.



BT EY FARRR SRS LA A E PR A F P EARL L ES Y LA
The 15" National Conference on Sound and Vibration, PCCU, June 16, 2007

Table 2 Simulation results of damping effects for Fiber-Reinforced Composite Plate

. . Predicted Damping ratio
Mode Natural frequency (Hz) Experlmerr;ttai\!) Damping a =13.4418 Error (%)
B =6.4341x10"
1 658 0.309% 0.296% -4.33
2 1340 0.304% 0.351% 15.53
3 1910 0.529% 0.442% -16.44
Averaged — 0.381% 0.356% -6.38%
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n
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(2) The enlarged plot around the 4™ mode is also
displayed and revealed that the constant
damping ratio provides with the best fit, while
the undamped case reveals exceptional high
value at peak resonances. The o« and g

definition approach is right between the both

cases.
(3) Base on the FRF simulation, the constant
damping ratio method has simulated the

damping effect better than others in this case
study.

4.2 Carbon Fiber-Reinforced Composite Plate

Figure 3 shows the carbon plate as well as the
experimental rig for the impact modal testing. Figure 4 is
the corresponding FE model for the carbon plate. The
plate model is constructed by linear hexahedron elements.
The plate is considered as in free boundary condition.
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Figurel Experimental setup for cantilever beam EMA
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Table 2 shows the experimental natural frequencies
and damping ratios for the first three modes as well as
the FRF plots. The discussions are as follows:

(1) For constant damping ratio method, the

damping ratio is set as the averaged damping
ratio £=0.381%.

Figure 2 FE model for cantilever beam

Figure3 Experimental setup for carbon plate EMA
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Table 3 Simulation results of damping effects for PCB

Experimental Damping

Predicted Damping ratio

Mode Natural frequency (Hz) ratio o = 31.9082 Error (%)
B =1.2236x10"°
1 189 1.418% 1.416% -0.11
2 363 0.688% 0.839% 21.99
3 481 1.065% 0.713% -33.06
4 539 0.673% 0.678% 0.78
5 685 0.797% 0.634% -20.46
6 822 0.698% 0.625% -10.51
7 1100 0.573% 0.654% 14.01
8 1290 0.695% 0.693% -0.40
9 1310 0.781% 0.697% -10.71
10 1420 0.683% 0.725% 6.14
11 1510 0.627% 0.749% 19.46
12 1660 0.766% 0.791% 3.22
13 1750 0.788% 0.818% 3.81
14 1820 1.335% 0.839% -37.14
Averaged — 0.828% 0.776% -6.19%
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(2) Base on the first three modes, the optimal values

of «=13.4418 and pS=6.4341x10"

averaged error is -6.38%.

(3) For the comparison of FRFs obtained from
different damping effects, one can still see that
the constant damping ratio method has better fit
than others near the peak resonances.

4.3 Print Circuit Board in Fixed Boundary

Figure 5 shows the PCB setup for experimental
modal testing. The PCB is fixed at four corners as shown.
The corresponding FE model as shown in Figure 6 uses
liner hexahedrons elements (solid 45) for the board and
spring elements (combin 14) to simulate the screw-fixed
boundary. Both constant damping & and optimal

constants « and g determined from the experiments
are shown in Table 3 as well as FRF simulation plots.

Discussions are as follows:

N
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result in minimum errors in terms of predicted
damping ratios as revealed in Table 2. The

(1) The averaged damping ratio from experiments is
0.828% that can be adopted as the constant
damping ratio for FRF prediction.

values of o =31.9082

determined from Equation

(13), results in the averaged errors of damping
ratios about -6.19%.

(2) The optimal
B =1.2236x10"°

Figure 4 FE model for carbon plate

and
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Figure 6 FE model for PCB

(3) The FRF plots generally agree each other. The
undamped case reveals unreasonable high peak
at resonance. Therefore, the damping effect
should be properly included for FRF simulation.

(4) For the first two resonances, both constant &

and constants « and S approaches reveal

about the same FRF response at peaks in this
case study.

5. Conclusion

This paper introduces two types of methods to
include damping effect in response simulation for finite
element analysis base on experimentally determined
damping ratios. Three kinds of different material and
structures are presented to study the FRF simulation for
different damping effects. Some conclusions are
summarized as follows:

(1) The FRF simulation for undamped case is
generally in adequate, especially near the peak
resonance frequency range.

(2) Both constant damping ratio method and
constants « and g method for damping

effect implement can provide with more realistic
FRF simulation results in comparison to
experimental FRFs.

(3) Using the averaged damping ratio from
experiments as the constant damping ratio can
be the easiest way and can better reasonably
simulate the FRFs.
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(4) This work discusses the approaches to
implement damping effect in finite element
analysis and can be useful for practical
engineering applications.
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