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ABSTRACT 
A nondestructive detection of surface cracks in aluminum alloy 6061 thin plate using 

experimental modal analysis is investigated in this paper. Modal testing is performed to obtain 
the mode shapes of the plate before and after damage under a completely free boundary 
condition. Modal displacements are then used to compute the strain energy of the laminate 
beam. Limited by grid points of measurement, a differential quadrature method is adopted to 
calculate the partial differential terms in strain energy formula. A damage index is then defined 
based on strain energy ratio of the aluminum plate before and after damage. This damage 
index successfully predicts the location of surface crack in aluminum plate. A pre-study using 
a 3-D finite element analysis is also performed to access this approach. It is found that mass 
effect of accelerometer to the natural frequencies of specimen is significant. Thus, a mass 
element is assigned to the finite element model. Good correlation between FEA and EMA 
results is obtained. Only measured mode shapes of the aluminum plate are required in this 
method, which provides a quick, accurate, inexpensive and flexible approach. 
Keywords: surface crack, experimental modal analysis, strain energy, damage index  
 
1. INTRODUCTION 

Experimental modal analysis has been increasingly adopted to nondestructively detect 
damages in engineering structures due to its flexibility of measurement and relatively low cost. 
The basic theory of this approach is to use the information of modal parameters, such as 
natural frequencies, mode shapes and damping ratios, to access the structural damage. 

Cawley and Adams [1] simply used the frequency shifts for different modes to detect the 
damage in composite structures. Tracy and Pardoen [2] found that the natural frequencies of a 
composite beam were affected by the size and damage location. Cornwell et al. [3] utilized the 
measured mode shapes to calculate the strain energy of a steel plate. In his approach, fractional 
strain energy of the plate before and after damaged was used to define a damage index, which 
was used to locate the damage in the steel plate. The method only requires the mode shapes of 
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the structure before and after damage. Choi et al. [4] modified this method by using the 
changes in the distribution of the modal compliance of the plate structure to detect single and 
multi-cracks in plate. Nevertheless, the challenge of the above approaches lies in the accuracy 
of measured modes. A large amount of data points are required for further analysis to locate 
the damage. To solve this problem, Hu et al. [5-8] adapted differential quadrature method 
(DQM) to obtain a solution of strain energy of a composite plate, and successfully detect the 
surface and matrix crack locations in various composite laminate plates. It was reported that 
the original DQM was first used in structural mechanics problems by Bert et al. [9]. This 
method is able to rapidly compute accurate solutions of partial differential equations by using 
only a few grid points in the respective solution domains [10]. 

The objective of this paper is to nondestructively detect a surface crack in aluminum 
alloy 6061 thin plate integrating experimental modal analysis and the strain energy method. 
The measured mode shapes were used to compute strain energy using DQM. Consequently, a 
damage index was established to locate the surface crack using the fractional strain energy of 
the plate before and after damaged. 
 
2. THEORY OF DAMAGE INDEX 

A plate structures as shown in Figure 1 is subdivided into Nx×Ny sub-region and denoted 
the location of each point by (xi,yj). The strain energy of plate during elastic deformation is 
given by 
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where w is transverse displacement; is bending stiffness of the plate. Considering a 
free-free vibration problem, for a particular mode shape, the total strain energy of the beam 
associated with the mode shape 

D

kφ  can be expressed as 
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Cornwell et al. [3] suggested that if the damage is located at a single sub-region then the 
change of strain energy in sub-region may become significant. Thus, the energy associated 
with sub-region (i,j) for the kth mode is given by 
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Similarly, and  represent the total strain energy and sub-regional strain energy of the 
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Considering all measured modes, m, in the calculation, damage index in sub-region (i,j) is 
defined as 
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Equation (5) is used to predict the damage location in thin plate structures. The partial 
differential terms are calculated using DQM [6]. 

 
3. FINITE ELEMENT ANALYSIS 

A pre-study was performed by establishing finite element model for thin plate with 
dimension 246×246×2mm3. ANSYS, a FEA commercial code, was used in this study. 
Eight-node linear solid element (SOLID45) was used to simulate the thin plate. A convergence 
study was performed to obtain a 24×24×2 mesh model, which is sufficient to solve the normal 
mode problem. A surface crack with 40 mm long, 0.8 mm wide and 1 mm deep was created in 
the thin plate by separating the nodes at the elements along the crack. Material properties (E = 
70 GPa, ν = 0.33, ρ=2735 kg/m3) of aluminum alloy 6061 were entered into ANSYS. A normal 
mode analysis with completely free boundary condition was performed to obtain the natural 
frequencies and the associated mode shapes up to 2 kHz. Hu et al. [5] found that mass effect of 
accelerometer to the natural frequencies of specimen is significant. Thus, a mass element 
(MASS21) with 0.0015 kg was assigned to the FE model. 
 
4. EXPERIMENTAL MODAL ANALYSIS 

A square thin plate with dimension 246×246×2mm3 was marked by 13×13 parallel grid 
points and vertically hung by two cotton strings to simulate a completely free boundary 
condition. Modal testing was performed by exciting the test plate throughout all grid points 
using an impact hammer with a force transducer. The dynamic responses were measured by an 
accelerometer fixing at the corner as shown in Figure 2. Siglab, Model 20-40, was used to 
record the frequency response functions (FRFs) between measured acceleration and impact 
force. ME’Scope, a software for the general purpose curve fitting, was used to extract the 
natural frequencies and mode shapes from the FRFs. A surface crack with 40 mm long, 0.8 
mm wide and 1 mm deep was created using a knife. 

 

5. RESULTS AND DISCUSSION 
Table 1 lists the first ten natural frequencies of the thin plate before and after damage, 

respectively. Good correlations between FEA and EMA results are obtained. However, mode 2 
and mode 7 are absent in EMA results. It is because that accelerometer is fixed to grid point 1 
which is located at the stationary line of mode 2 and 7. Shifting accelerometer location from 
grid point 1 to grid point 14, these two modes are revealed as shown in Table 2. Unfortunately, 
the changes in natural frequencies and mode shapes of the plate before and after damage are 
almost invisible. In fact, it is very difficult to detect the small damage in plate structures based 
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on the changes of natural frequencies and the associate mode shapes. 
Figure 3 shows the damage index obtained from the first five mode shapes of FEA 

results. It is good enough to predict the surface crack location. Since it is possible to lose some 
mode shapes in EMA due to stationary points and lines, five FEA mode shapes, i.e., 1 and 3-6, 
are selected to compute damage indices as shown in Figure 4. Consequently, surface crack 
location is successfully predicted as well. 

In EMA result, the first five mode shapes, i.e., 1 and 3-6, were used to compute the 
damage indices as shown in Figure 5. Peak values occur around surface crack location, and 
some pseudomorphs in undamaged areas as shown in Figure 5-(a). It is due to the deviation in 
measurement. Cornwell et al. [3] suggested that damage indices with values greater than two 
are associated with potential damage locations. After truncating the peaks of damage index less 
than two, the improving outcome is shown in Figure 5-(b). Figures 6-(a), 7-(a) and 8-(a) show 
the damage indices by using the first six, seven and eight mode shapes, respectively. In these 
three cases, mode shapes 2 and 7 are absent. However, damage indices still successfully 
predict the surface crack location. After truncation, damage indices of surface crack become 
much clearer as shown in Figures 6-(b), 7-(b) and 8-(b). 
 
6. CONCLUSIONS 

A surface crack in aluminum alloy 6061 thin plate is successfully predicted by using 
EMA and strain energy method. Though the challenge still lies in the accuracy of mode shape 
measurement, significant contributions of this approach are as follows, 

 Only a few mode shapes of the plate before and after damage are required. 
 Damage location is nondestructively identified. 
 Potential damage in overall structure is evaluated.  
 Real-time monitor of structure health during the practical service is available. 
 Measurement is flexible and cost is relative low. 
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Figure 1 A schematic illustrating of plate            Figure 2 Experimental Set-up 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Damage index (FEA: modes 
1, 3-6) 

Figure 3 Damage index (FEA: modes 1-5)
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(a) before truncation                         (b) after truncation 
 

Figure 5 Damage index (EMA: the first five modes) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) before truncation                         (b) after truncation 
 

Figure 6 Damage index (EMA: the first six modes) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) before truncation                         (b) after truncation 
 

Figure 7 Damage index (EMA: the first seven modes) 
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(a) before truncation                         (b) after truncation 
 

Figure 8 Damage index (EMA: the first eight modes) 
 

Table 1: Natural frequency (Accelerometer at grid point 1) 

 Before damage After damage 
mode FEA(Hz) EMA(Hz) (%)△ FEA(Hz) EMA(Hz) (%)△  

1 106 108 1.9 106 108 1.9 
2 157 － － 157 － － 
3 196 201 2.6 195 200 2.6 
4 272 278 2.2 272 278 2.2 
5 484 495 2.3 484 495 2.3 
6 512 516 0.8 512 516 0.8 
7 563 － － 563 － － 
8 615 623 1.3 615 623 1.3 
9 839 847 1.0 839 847 1.0 
10 994 1000 0.6 994 1000 0.6 

 
Table 2: Natural frequencies and mode shapes (Accelerometer at grid point 14) 

 FEA EMA FEA EMA 
106Hz 108Hz 514Hz 518Hz 

1 
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157Hz 162 561Hz 562 

2 
 

 

7

197Hz 202Hz 627Hz 631Hz 
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8

275Hz 280Hz 856Hz 856Hz 
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9

493Hz 499Hz 964Hz 959Hz 

 
5 

 

 

10

 
 

 
 

 8


