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ABSTRACT

A finite element analysis for free vibration of
composite laminates is verified using experimental
modal analysis in this paper. A three dimensional
finite element model was developed to simulate
composite laminate plates with unidirectional fiber
orientations  [90]s, cross-ply  [0/90]4s, and
quasi-isotropic  [0/90/£45],s. Mass effect of
accelerometer was considered into the analysis
model. Material constants of laminate plates were
obtained from tensile test and entered into the solver.
A normal mode analysis was performed to obtain the
natural frequencies and the associated mode shapes
of laminate plates with completely free boundary
condition. Modal testing was performed to extract
the natural frequencies and associated mode shapes
in comparison to FEA results. Thermoplastic
composite AS4/PEEK was used to fabricate the
laminate plates. Modal Assurance Criterion was used
to verify the mode shapes obtained from FEA and
EMA results. Consequently, Good correlation
between FEA and EMA results is obtained. This
verified model can be used for further analysis.

Keywords: finite element analysis, experimental
modal analysis, composite laminates,
model verification

1. INTRODUCTION

Vibration behavior of composite materials and
structures is still one the most complicated problems
studied by many researchers due to their anisotropic
properties. Traditionally, free vibration of composite
laminates is the essential problem to be investigated
by significant number of papers which were
thoroughly reviewed by Leissa [1], Bert [2], Reddy
[3], Kapania and Raciti [4]. Most of the above
approaches focused on both analytical (closed-form,
Galerkin, Rayleigh-Ritz method) and numerical
methods. Especially, the use of FEA commercial

codes has increased dramatically over the past
decade due to its flexibility of modeling. In these
commercial codes, four-node linear shell or plate
elements were usually adopted to define the lamina
properties and stacking sequence [5-6]. The input
mechanical properties of composite material were
commonly measured from quasi-static tensile tests
of the materials. Nevertheless, the local static
properties may not represent the global dynamic
behavior of the structures. Thus, a so-call inverse
method was proposed to determine the global
mechanical properties using modal testing [7-8]. The
study of thick cross-ply laminates show that in-plane
shear modulus and Poisson’s ratio obtained from
modal testing are quite different from static test [8].
A question raised here is: can the global properties
be applied to other problems of structural analysis?
If the global properties are size-dependent or
geometry-dependent, which one should we follow?
Therefore, the use of local static material properties
in the analysis of dynamic global structures is still to
be improved and verified.

The objective of this paper is to study the free
vibration of various thin composite symmetrical
laminates by using FEA and EMA. The material
properties obtained from local measurement is used
in the global FEA. The dynamic responses obtained
from global structure using EMA is used to verify
finite element model. This verified FE model can be
used in further analysis of the problems of damage
detections in composite laminates.

2. TRANSVERSE VIBRATION OF LAMINATE
PLATE

The equation of motion for transverse vibration
of a composite laminate plate can be derived from
classical laminate theory, i.e., [9]
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where W is the transverse displacement; Dj are
bending stiffness; p is density of the laminate plate.
For free harmonic vibration at frequency, o, the
solution of transverse displacement can be assumed
as

W(X, y,t) = (x, y)e'* )

where @(X,y) is a mode shape function. Substituting
equation (2) in equation (1), we have

o'¢ o'y o'g 2

D, —2+2(D;, +2D +D —p*p=0(3)
1 _4 (D1, 66) ooy 24P ¢

For simply supported boundary, transverse

displacements and bending moments much vanish at
the edges. The solutions is obtained as

#(X,Y) = A sin%sin% 4)

where m and n are mode indices which refer to the
number of half wavelengths along the x and y
directions, respectively; a and b are the dimensions.
Substitution of equation (4) in equation (3) yields
the frequency equation

4
Oy =%[D1 m* +2(D;, +2D)(MNR? + Dy, (NR)*]

(5)
where R = a/b. Generally, it is not possible to find

exact mode shape function for completely free edges.

Approximate solutions must be derived using
approaches such as Rayleigh-Ritz method or the
Galerkin method [10,11].

4. FINITE ELEMENT ANALYSIS

A three dimensional finite element model was
established to analyze the free vibration of
composite laminate plates, [90];5, [0/90]4s,
[0/90/+45],s, with dimension 222x247x2.3 mm’.
ANSYS, a FEA commercial code, was used in this
study. FEight-node linear solid element (SOLID46)
was used to simulate the laminate plates. The
element provides a layered version allow up to 250
different material layers. Traditionally, shell or plate
elements are adopted in solving the problem.
However, they are not convenient to model a local
damage not penetrating the plate such as surface
crack or inside matrix crack. This is why solid
element is used in this study. Figure 1 shows the
finite element model. A convergence study was
performed for laminate plate [90];6. A 36x24x8
mesh model is sufficient to solve the first eight
normal modes problem.

Material constants listed in Table 1 are obtained
from quasi-static tensile tests and are entered into
ANSYS. Hu et al. [12] found that the effects of

out-of-plane shear modulus Gy; and Poisson’s ratio
vy3 on the natural frequencies are not critical in thin
plate. Thus, the values of G,; and v,; were assumed
to be the same as Gyand vy, in this study. Material
density was directly measured from the test plates. A
normal mode analysis with completely free
boundary condition was performed to obtain the
natural frequencies and the associated mode shapes
up to 5 kHz. Hu et al. [12] found that mass effect of
accelerometer to the natural frequencies of specimen
is significant. Thus, a mass element (MASS21) with
0.0015 kg was assigned to fix at the FE model as
shown in Figure 1.

Accelerometer
(Mass21) -

Figure 1 Finite element model

Table 1 Material properties for laminate plates

pmpeﬁi:ates [90],6 | [0/90%ss | [0/90/445],s
aeg?;g 1526 | 1537 1576
E,=117.2 GPa
Material E»=9.0 GPa
constants G]2:G23:G13:4_9 GPa
Vi2=Vy3=v3=0.315

5. EXPERIMENTAL MODAL ANALYSIS

Laminate plates [90];5, [0/90]ss, [0/90/£45],
were fabricated using thermoplastic composite
prepreg AS4/PEEK, and then cured at a hot-press
machine. After curing, the panel was cut to a plate
with dimension 222x24.7x2.3 mm® and marked with
13x13 parallel grid points. The test beam was
vertically hung by two cotton strings to simulate a
completely free boundary condition as shown in
Figure 2. Laminate plate was excited by an impact
hammer with a force transducer throughout all grid
points. Dynamic responses were measured by an
accelerometer fixed at the corner. Siglab, Model
20-40, was used to record the frequency response
functions (FRFs) between measured acceleration and
impact force. ME’Scope, a software for general
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purpose curve fitting, was used to extract modal
parameters, i.e., natural frequencies, damping ratios
and mode shapes, from the FRFs.

Figure 2 Experimental Set-up

6. MODEL VERIFICATION

The first eight natural frequencies of the
laminate plates, [90]y4, [0/90]4s, and [0/90/£45],s,
are listed in Tables 2, 3 and 4, respectively.
Superscript symbol “+” denotes the analytical results
of FE models without accelerometer. Symbol “/\”
denotes the difference between FEA and EMA
results. The data show that accelerometer mass
significantly affects the natural frequency. Adding
the mass element to FE model, the differences
between FEA and EMA results reduce to less than 4
% for laminate plates [90],s and [0/90],s, and less
than 6 % for laminate plate [0/90/+45],s. Ignoring
accelerometer mass effect, the difference between
FEA and EMA could increase up to more than 10%.
In fact, the mass ratio of accelerometer to laminate
plates is about 0.016; however, the changes of
natural frequencies in laminate plates are in the
range from 2% to 12%.

The first eight associated mode shapes of the
laminate plates are compared using Modal
Assurance Criterion (MAC), which is an approach to
compare the mode shapes in terms of vector form,
ie.,

B NEN
Al T ) ©

where {¢,} and {@} are mode shapes obtained from
FEA and EMA, respectively. Basically, good
correlation between FEA and EMA results is
obtained, if the value of MAC is greater than 0.9.
Less than 0.05, correlation is poor. Table 5, 6 and 7
list the MAC values of three different laminate
plates. The data at the diagonal show that good
correlations between FEA and EMA results are
obtained. The mode shapes obtained from FEA and
EMA results can also be verified by checking mode
shape contours as shown in table 8, 9 and 10. The

contours show that FEA (with accelerometer) and
EMA results are very much alike. Consequently, a
finite element model has been verified. This reliable
model can be used for further analysis of damage
detection problems.

Table 2 Natural frequencies of laminate [90];4

Mode FEA(Hz) EMA(Hz) (%)

(3,1) | 144" | 138 134 737 ] 3.0
(22) | 181" | 173 175 427 | -1.1
4,1) | 397" | 364 371 717 ] -1.9
(3,2) | 399" | 398 387 3.1 | 2.8
42) | 689" | 638 658 46 | -3.0
(5,1) | 7837 | 768 740 57 | 3.8
(52) | 1082 | 997 1030 517 | 32
(6,1) | 13017 | 1255 1220 |66 | 29

Table 3 Natural frequencies of laminate [0/90],5

Mode | FEA(Hz) | EMA(Hz)| A(%)

(2,2) | 1737 | 160 154 1227 ] 3.9
(3,1) | 382" | 366 361 58 | 14
(3,2) | 519" | 476 486 6.7 |-2.1
(1,3) | 920" | 817 846 88 | -34
(2,3) | 9817 | 941 924 6.1° | 1.8
(4,1) | 1056" | 1023 1000 56 |23
42) | 11757 | 1119 1120 49" [-0.1
(3,3) | 12237 | 1201 1170 45 |26

E3

Table 4 Natural frequencies of laminate [0/90/+£45],s

Mode | FEA(Hz) | EMA(Hz) A (%)

(2,2) | 254" | 242 212 19.8" | 14.2
(3,1) | 304" | 295 280 8.6 | 5.4
(3,2) | 600" | 567 536 119" | 5.8
(4,1) | 833" | 808 778 717 | 3.9
(1,3) | 883" | 857 804 9.8" | 6.6
(2,3) | 1030° | 960 921 11.8 | 4.2
(4,2) | 11397 | 1112 1060 75 | 49
(3,3) | 1398 | 1339 1280 92" | 4.6

Table 5 MAC of laminate [90];6

Mode FEA

G.D[(22)|4D[(32)[(4.2)[5.D)][(5,2)](6,1)

(3,1)[0.967(0.030/0.015]0.001{0.001]0.047|0.019]0.002

(2,2)[0.001{0.976|0.023|0.001{0.008{0.018]0.019/0.003

(4,1)[0.006/0.001|0.808]0.117{0.043]0.002|0.001|0.009

(3,2)[0.001{0.000/0.101]0.867{0.010{0.002|0.011]0.057

EMA

(4,2)[0.004/0.004/0.006]0.005]0.905/0.036/0.040|0.009

(5,1)]0.002|0.001{0.000{0.000{0.002]|0.876|0.023|0.002

(5,2)[0.004/0.001/0.008]0.000{0.002]0.017|0.847|0.074

(6,1)[0.000{0.001|0.006]0.000{0.000{0.000{0.0010.745
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Table 6 MAC of laminate [0/90]45 364 Hz 371 Hz

FEA
223,32 (1L,H[23)[EDH[42)]33

Mode

(2,2)[0.9920.025]0.022{0.026{0.001|0.000|0.010{0.027 4,1
(3,1)[0.001/0.950]0.064|0.022{0.000{0.000|0.000{0.009
(3,2)[0.007]0.010/0.934/0.111]0.005{0.008]0.006/0.001 ' AN - |
(1,3)[0.003]0.001|0.000{0.601]0.278]0.061]0.021|0.001
(2,3)[0.001]0.002|0.000{0.134]0.687|0.154]0.036/0.000 J
(4,1)[0.001/0.004]0.000{0.031]0.012{0.756|0.131]0.001 1 g

(4,2)[0.002|0.004]0.002{0.033]0.003]0.046|0.775|0.038 ' L R R N
(3,3)[0.001]0.005|0.000{0.003]0.004]0.001]0.017]0.922

EMA

398 Hz 387 Hz

Table 7 MAC of laminate [0/90/+45],s

Mode FEA (3,2)

eoHlan[EH[3][@H][@ED][42)][33) ,
(2,2)]0.990[0.000]0.003]0.005]0.0000.001]0.006/0.004 / ]
(3.1)]0.010[0.992[0.000[0.001]0.001[0.004]0.002[0.001 : -
(3,2)[0.017[0.007[0.983]0.000[0.0000.006[0.002[0.005 JyaN
(4,1)]0.006[0.008]0.031]0.905/0.013[0.035[0.0000.000

EMA

(1,3)[0.002|0.003]0.009{0.003]0.958{0.003|0.001]0.003 638 Hz 658 Hz

(2,3)[0.001]0.002|0.019/0.116]0.016|0.866|0.003|0.002
(4,2)[0.022]0.002|0.006/0.002{0.005{0.024|0.967|0.001
(3,3)[0.011/0.006]0.006{0.000{0.001]0.040|0.011]0.934

@2 S
Table 8 Mode shapes of laminate [90]6 A N4
MO FEA EMA (A /7
138 Hz 134 Hz
_ 768 Hz 740 Hz
(3.1 gl AL [ TR
(5.1 ||l
| . ':II."I ;I | | |
173 Hz 175 Hz '
997 Hz 1030 Hz
(2.2)
) :--— - ————r——— (5’2) T -~
" | | ‘ N M
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1255 Hz 1220 Hz
941 Hz 924 Hz
©6.1) "
I.'I / m (2’3)
| [/ |' II | I'l | - B
| | 4
[ 172\ |! l I‘ __f Ll |
Table 9 Mode shapes of laminate [0/90]4s o
Mo FEA EMA 1023 Hz
160 Hz 154 Hz
(4.1)
@2 5 ,
] N e L
Fp— EErE— 1119 Hz 1120 Hz
S 77 = - @2 1]/ o N
476 Hz 486 Hz 1201 Hz 1170 Hz
(3.2)
G |
817 Hz 846 Hz : T
(1,3)
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Table 10 Mode shapes of laminate [0/90/+45],s

960Hz 921Hz
2.3)

1112Hz 1060Hz
(4.2)

1339Hz 1280Hz
(3.3)

Mo FEA EMA
242Hz 212Hz

(2,2)
295Hz 280Hz

3,
567Hz 536Hz

(3,2)
808Hz 778Hz

4,1
857Hz 804Hz

(1,3)

7. CONCLUSIONS

A finite element model for free vibration
analysis of composite laminate plates has been
verified using experimental modal analysis. This
reliable model successfully simulates three types of
laminate plates, unidirectional fiber orientations
[90]6, cross-ply [0/90]ss, and quasi-isotropic
[0/90/+45],s. The mass of accelerometer
significantly affects natural frequencies of the
laminate plates. Considering the mass effect of
accelerometer, good correlations of natural
frequencies and the associate mode shapes between
FEA and EMA results are obtained. This model
verifies that local measured static material properties
can still be used to represent the global structural
dynamic behaviors. The reliable model provides us
to further analyze the dynamic problem such as
damage detection problems of composite laminates
in the future work.
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