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ABSTRACT 

A finite element analysis for free vibration of 
composite laminates is verified using experimental 
modal analysis in this paper. A three dimensional 
finite element model was developed to simulate 
composite laminate plates with unidirectional fiber 
orientations [90]16, cross-ply [0/90]4S, and 
quasi-isotropic [0/90/±45]2S. Mass effect of 
accelerometer was considered into the analysis 
model. Material constants of laminate plates were 
obtained from tensile test and entered into the solver. 
A normal mode analysis was performed to obtain the 
natural frequencies and the associated mode shapes 
of laminate plates with completely free boundary 
condition. Modal testing was performed to extract 
the natural frequencies and associated mode shapes 
in comparison to FEA results. Thermoplastic 
composite AS4/PEEK was used to fabricate the 
laminate plates. Modal Assurance Criterion was used 
to verify the mode shapes obtained from FEA and 
EMA results. Consequently, Good correlation 
between FEA and EMA results is obtained. This 
verified model can be used for further analysis. 

Keywords: finite element analysis, experimental 
modal analysis, composite laminates, 
model verification 

1. INTRODUCTION 

Vibration behavior of composite materials and 
structures is still one the most complicated problems 
studied by many researchers due to their anisotropic 
properties. Traditionally, free vibration of composite 
laminates is the essential problem to be investigated 
by significant number of papers which were 
thoroughly reviewed by Leissa [1], Bert [2], Reddy 
[3], Kapania and Raciti [4]. Most of the above 
approaches focused on both analytical (closed-form, 
Galerkin, Rayleigh-Ritz method) and numerical 
methods. Especially, the use of FEA commercial 

codes has increased dramatically over the past 
decade due to its flexibility of modeling. In these 
commercial codes, four-node linear shell or plate 
elements were usually adopted to define the lamina 
properties and stacking sequence [5-6]. The input 
mechanical properties of composite material were 
commonly measured from quasi-static tensile tests 
of the materials. Nevertheless, the local static 
properties may not represent the global dynamic 
behavior of the structures. Thus, a so-call inverse 
method was proposed to determine the global 
mechanical properties using modal testing [7-8]. The 
study of thick cross-ply laminates show that in-plane 
shear modulus and Poisson’s ratio obtained from 
modal testing are quite different from static test [8]. 
A question raised here is: can the global properties 
be applied to other problems of structural analysis? 
If the global properties are size-dependent or 
geometry-dependent, which one should we follow? 
Therefore, the use of local static material properties 
in the analysis of dynamic global structures is still to 
be improved and verified. 

The objective of this paper is to study the free 
vibration of various thin composite symmetrical 
laminates by using FEA and EMA. The material 
properties obtained from local measurement is used 
in the global FEA. The dynamic responses obtained 
from global structure using EMA is used to verify 
finite element model. This verified FE model can be 
used in further analysis of the problems of damage 
detections in composite laminates. 

2. TRANSVERSE VIBRATION OF LAMINATE 
PLATE 

The equation of motion for transverse vibration 
of a composite laminate plate can be derived from 
classical laminate theory, i.e., [9] 
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where w is the transverse displacement; Dij are 
bending stiffness; ρ is density of the laminate plate. 
For free harmonic vibration at frequency, ω, the 
solution of transverse displacement can be assumed 
as 

tieyxtyxw ωφ ),(),,( =      (2) 

where φ(x,y) is a mode shape function. Substituting 
equation (2) in equation (1), we have 
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For simply supported boundary, transverse 
displacements and bending moments much vanish at 
the edges. The solutions is obtained as  

b
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where m and n are mode indices which refer to the 
number of half wavelengths along the x and y 
directions, respectively; a and b are the dimensions. 
Substitution of equation (4) in equation (3) yields 
the frequency equation 
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where R = a/b. Generally, it is not possible to find 
exact mode shape function for completely free edges. 
Approximate solutions must be derived using 
approaches such as Rayleigh-Ritz method or the 
Galerkin method [10,11]. 

4. FINITE ELEMENT ANALYSIS 

A three dimensional finite element model was 
established to analyze the free vibration of 
composite laminate plates, [90]16, [0/90]4S, 
[0/90/±45]2S, with dimension 222×247×2.3 mm3. 
ANSYS, a FEA commercial code, was used in this 
study. Eight-node linear solid element (SOLID46) 
was used to simulate the laminate plates. The 
element provides a layered version allow up to 250 
different material layers. Traditionally, shell or plate 
elements are adopted in solving the problem. 
However, they are not convenient to model a local 
damage not penetrating the plate such as surface 
crack or inside matrix crack. This is why solid 
element is used in this study. Figure 1 shows the 
finite element model. A convergence study was 
performed for laminate plate [90]16. A 36×24×8 
mesh model is sufficient to solve the first eight 
normal modes problem. 

Material constants listed in Table 1 are obtained 
from quasi-static tensile tests and are entered into 
ANSYS. Hu et al. [12] found that the effects of 

out-of-plane shear modulus G23 and Poisson’s ratio 
ν23 on the natural frequencies are not critical in thin 
plate. Thus, the values of G23 and ν23 were assumed 
to be the same as G12 and ν12 in this study. Material 
density was directly measured from the test plates. A 
normal mode analysis with completely free 
boundary condition was performed to obtain the 
natural frequencies and the associated mode shapes 
up to 5 kHz. Hu et al. [12] found that mass effect of 
accelerometer to the natural frequencies of specimen 
is significant. Thus, a mass element (MASS21) with 
0.0015 kg was assigned to fix at the FE model as 
shown in Figure 1. 

 

Composite laminate 
(Solid46) 

Accelerometer 
(Mass21) 

 
Figure 1 Finite element model 

 

Table 1 Material properties for laminate plates 

Laminates
properties [90]16 [0/90]4S [0/90/±45]2S

Density 
(kg/m3) 1526 1537 1576 

Material 
constants 

E11=117.2 GPa 

E22=9.0 GPa 

G12=G23=G13=4.9 GPa 

ν12=ν23=ν13=0.315 
 

5. EXPERIMENTAL MODAL ANALYSIS 

Laminate plates [90]16, [0/90]4S, [0/90/±45]2S 
were fabricated using thermoplastic composite 
prepreg AS4/PEEK, and then cured at a hot-press 
machine. After curing, the panel was cut to a plate 
with dimension 222×24.7×2.3 mm3 and marked with 
13×13 parallel grid points. The test beam was 
vertically hung by two cotton strings to simulate a 
completely free boundary condition as shown in 
Figure 2. Laminate plate was excited by an impact 
hammer with a force transducer throughout all grid 
points. Dynamic responses were measured by an 
accelerometer fixed at the corner. Siglab, Model 
20-40, was used to record the frequency response 
functions (FRFs) between measured acceleration and 
impact force. ME’Scope, a software for general 
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purpose curve fitting, was used to extract modal 
parameters, i.e., natural frequencies, damping ratios 
and mode shapes, from the FRFs. 

 
Figure 2 Experimental Set-up 

6. MODEL VERIFICATION 

The first eight natural frequencies of the 
laminate plates, [90]16, [0/90]4S, and [0/90/±45]2S, 
are listed in Tables 2, 3 and 4, respectively. 
Superscript symbol “∗” denotes the analytical results 
of FE models without accelerometer. Symbol “△” 
denotes the difference between FEA and EMA 
results. The data show that accelerometer mass 
significantly affects the natural frequency. Adding 
the mass element to FE model, the differences 
between FEA and EMA results reduce to less than 4 
% for laminate plates [90]16 and [0/90]4S, and less 
than 6 % for laminate plate [0/90/±45]2S. Ignoring 
accelerometer mass effect, the difference between 
FEA and EMA could increase up to more than 10%. 
In fact, the mass ratio of accelerometer to laminate 
plates is about 0.016; however, the changes of 
natural frequencies in laminate plates are in the 
range from 2% to 12%. 

The first eight associated mode shapes of the 
laminate plates are compared using Modal 
Assurance Criterion (MAC), which is an approach to 
compare the mode shapes in terms of vector form, 
i.e., 

{ } { }( ) { } { }( )
{ } { }( ){ } { }( )e

T
ea

T
a

e
T

a
ea

φφφφ
φφ

φφ
,,

,
,MAC

2

=   (6) 

where {φa} and {φe} are mode shapes obtained from 
FEA and EMA, respectively. Basically, good 
correlation between FEA and EMA results is 
obtained, if the value of MAC is greater than 0.9. 
Less than 0.05, correlation is poor. Table 5, 6 and 7 
list the MAC values of three different laminate 
plates. The data at the diagonal show that good 
correlations between FEA and EMA results are 
obtained. The mode shapes obtained from FEA and 
EMA results can also be verified by checking mode 
shape contours as shown in table 8, 9 and 10. The 

contours show that FEA (with accelerometer) and 
EMA results are very much alike. Consequently, a 
finite element model has been verified. This reliable 
model can be used for further analysis of damage 
detection problems. 

 

Table 2 Natural frequencies of laminate [90]16

Mode FEA(Hz) EMA(Hz) △(%) 
(3,1) 144* 138 134 7.3* 3.0
(2,2) 181* 173 175 4.2* -1.1
(4,1) 397* 364 371 7.1* -1.9
(3,2) 399* 398 387 3.1* 2.8
(4,2) 689* 638 658 4.6* -3.0
(5,1) 783* 768 740 5.7* 3.8
(5,2) 1082* 997 1030 5.1* -3.2
(6,1) 1301* 1255 1220 6.6* 2.9

 

Table 3 Natural frequencies of laminate [0/90]4S

Mode FEA(Hz) EMA(Hz) △(%) 
(2,2) 173* 160 154 12.2* 3.9
(3,1) 382* 366 361 5.8* 1.4
(3,2) 519* 476 486 6.7* -2.1
(1,3) 920* 817 846 8.8* -3.4
(2,3) 981* 941 924 6.1* 1.8
(4,1) 1056* 1023 1000 5.6* 2.3
(4,2) 1175* 1119 1120 4.9* -0.1
(3,3) 1223* 1201 1170 4.5* 2.6

 

Table 4 Natural frequencies of laminate [0/90/±45]2S 

Mode FEA(Hz) EMA(Hz) △(%) 
(2,2) 254* 242 212 19.8* 14.2
(3,1) 304* 295 280 8.6* 5.4
(3,2) 600* 567 536 11.9* 5.8
(4,1) 833* 808 778 7.1* 3.9
(1,3) 883* 857 804 9.8* 6.6
(2,3) 1030* 960 921 11.8* 4.2
(4,2) 1139* 1112 1060 7.5* 4.9
(3,3) 1398* 1339 1280 9.2* 4.6

 

Table 5 MAC of laminate [90]16

FEA Mode
(3,1) (2,2) (4,1) (3,2) (4,2) (5,1) (5,2) (6,1)

(3,1) 0.967 0.030 0.015 0.001 0.001 0.047 0.019 0.002
(2,2) 0.001 0.976 0.023 0.001 0.008 0.018 0.019 0.003
(4,1) 0.006 0.001 0.808 0.117 0.043 0.002 0.001 0.009
(3,2) 0.001 0.000 0.101 0.867 0.010 0.002 0.011 0.057
(4,2) 0.004 0.004 0.006 0.005 0.905 0.036 0.040 0.009
(5,1) 0.002 0.001 0.000 0.000 0.002 0.876 0.023 0.002
(5,2) 0.004 0.001 0.008 0.000 0.002 0.017 0.847 0.074

EM
A

 

(6,1) 0.000 0.001 0.006 0.000 0.000 0.000 0.001 0.745
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Table 6 MAC of laminate [0/90]4S

FEA Mode 
(2,2) (3,1) (3,2) (1,3) (2,3) (4,1) (4,2) (3,3)

(2,2) 0.992 0.025 0.022 0.026 0.001 0.000 0.010 0.027
(3,1) 0.001 0.950 0.064 0.022 0.000 0.000 0.000 0.009
(3,2) 0.007 0.010 0.934 0.111 0.005 0.008 0.006 0.001
(1,3) 0.003 0.001 0.000 0.601 0.278 0.061 0.021 0.001
(2,3) 0.001 0.002 0.000 0.134 0.687 0.154 0.036 0.000
(4,1) 0.001 0.004 0.000 0.031 0.012 0.756 0.131 0.001
(4,2) 0.002 0.004 0.002 0.033 0.003 0.046 0.775 0.038

EM
A

 

(3,3) 0.001 0.005 0.000 0.003 0.004 0.001 0.017 0.922

 

Table 7 MAC of laminate [0/90/±45]2S

FEA Mode 
(2,2) (3,1) (3,2) (1,3) (2,3) (4,1) (4,2) (3,3)

(2,2) 0.990 0.000 0.003 0.005 0.000 0.001 0.006 0.004
(3,1) 0.010 0.992 0.000 0.001 0.001 0.004 0.002 0.001
(3,2) 0.017 0.007 0.983 0.000 0.000 0.006 0.002 0.005
(4,1) 0.006 0.008 0.031 0.905 0.013 0.035 0.000 0.000
(1,3) 0.002 0.003 0.009 0.003 0.958 0.003 0.001 0.003
(2,3) 0.001 0.002 0.019 0.116 0.016 0.866 0.003 0.002
(4,2) 0.022 0.002 0.006 0.002 0.005 0.024 0.967 0.001

EM
A

 

(3,3) 0.011 0.006 0.006 0.000 0.001 0.040 0.011 0.934

 

Table 8 Mode shapes of laminate [90]16

 
Mode FEA EMA 

138 Hz 134 Hz 

 
 

(3,1) 
 
 

 

 

173 Hz 175 Hz 

 
 

(2,2) 
 
 

 

 

 

 

 

 

364 Hz 371 Hz  
 
 
 

(4,1)
 

 

398 Hz 387 Hz  

 

 

(3,2)

 

 

 

 

638 Hz 658 Hz  

 

 

(4,2)  

 

768 Hz 740 Hz  

 

 

(5,1)
 

 

997 Hz 1030 Hz  

 

 

(5,2)

 

 

 

 

 

 

 H042-4 



中華民國力學學會第廿九屆全國力學會議   新竹市 國立清華大學 動力機械工程學系   94 年 12 月 16-17 日 
The 29th National Conference on Theoretical and Applied Mechanics, December 16-17, 2005, NTHU, Hsinchu, Taiwan, R.O.C. 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

 

1255 Hz 1220 Hz  

 

 

(6,1) 

 

 

 

 

 
Table 9 Mode shapes of laminate [0/90]4S

Mode FEA EMA 

160 Hz 154 Hz 

(2,2) 
  

 

366 Hz 361 Hz 

(3,1)  

 

476 Hz 486 Hz  
 
 

(3,2) 
 
 

 

 

817 Hz 846 Hz  
 
 

(1,3) 
 
  

 

 
 
 

941 Hz  924 Hz 

(2,3)

  

 

 1023 Hz 1000 Hz 

(4,1)  

 

1119 Hz  1120 Hz  

 

 

(4,2)

 

 

 

 

1201 Hz 1170 Hz  

 

 

(3,3)
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Table 10 Mode shapes of laminate [0/90/±45]2S

Mode FEA EMA 

242Hz 212Hz 

(2,2) 
  

 

295Hz 280Hz 

(3,1)  

 

567Hz 536Hz 

(3,2)  

 

808Hz 778Hz 

(4,1) 
 

 

857Hz 804Hz 

 (1,3)  

 

 
 

 
 

960Hz 921Hz 

(2,3)  

 

1112Hz 1060Hz 

(4,2)  

 

1339Hz 1280Hz 

(3,3)
 

 

 

7. CONCLUSIONS 

A finite element model for free vibration 
analysis of composite laminate plates has been 
verified using experimental modal analysis. This 
reliable model successfully simulates three types of 
laminate plates, unidirectional fiber orientations 
[90]16, cross-ply [0/90]4S, and quasi-isotropic 
[0/90/±45]2S. The mass of accelerometer 
significantly affects natural frequencies of the 
laminate plates. Considering the mass effect of 
accelerometer, good correlations of natural 
frequencies and the associate mode shapes between 
FEA and EMA results are obtained. This model 
verifies that local measured static material properties 
can still be used to represent the global structural 
dynamic behaviors. The reliable model provides us 
to further analyze the dynamic problem such as 
damage detection problems of composite laminates 
in the future work. 
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有限元素於複合材料疊層板自由振

動分析之模型驗證 
 

胡惠文 王栢村 李政信 王桀民 

國立屏東科技大學複合材料實驗室 

 

摘要 

本論文探討如何應用實驗模態來驗證複合材

料疊層板之有限元模型在自由振動問題之分析。

疊層板之有限元模型採用實體元素，並將加速度

計質量以單點質量元素模擬。有限元模型之材料

常數則以靜態拉伸試驗量測獲得。實驗材料是採

用碳纖維/聚二醚酮(AS4/PEEK)，疊層型式為單

一纖維方向 [90]16，十字疊層[0/90]4S，以及類似

等向性疊層 [0/90/±45]2S三種。經比對實驗與有限

元分析結果之自然頻率與模態振型，兩種結果相

當吻合。模態振型的比較則採用模態保證指標。 

關鍵字：有限元訴分析、實驗模態分析、複合材

料疊層板、模型驗證 
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