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ABSTRACT 

A nondestructive detection of matrix cracks in 
composite laminates using modal analysis is 
investigated in this paper. Thermoplastic composite 
AS4/PEEK was used to fabricate a laminate beam 
[02/90n/02]. To create matrix cracks in 90-degree 
lamina, the laminate beam was subjected to tensile 
test. Modal test was performed to obtain the mode 
shapes of laminate beam before and after damage. 
Mode shape displacements were used to compute the 
strain energy of the laminate beam. Limited by grid 
points of measurement, a differential quadrature 
method was used to calculate the partial differential 
terms in strain energy formula. A damage index was 
then defined based on strain energy ratio of the 
laminate beam before and after damage. 
Consequently, damage index developed in this study 
successfully predicts the locations of matrix cracks 
inside the laminate beam. A pre-study was 
performed to access this approach by using a 3-D 
finite element analysis. Good correlation between 
analytical and experimental results is obtained.  

Keywords: modal analysis, matrix crack, composite 
laminate, strain energy 

1. INTRODUCTION 

Matrix crack is of concern to composite 
structure designers especially in structural long term 
durability. Traditionally, matrix crack initiates the 
damage in composite laminates and then 
subsequently triggers other damage modes, such as 
delamination. Therefore, advance detection of 
matrix crack is essential in the use of composite 
structures. 

In nondestructive damage detection technology, 
vibration-based methods have been increasingly 
adopted due to their flexibility in measurement and 
relatively low cost. The basic idea of these methods 
is to use the information of modal parameters, such 

as frequency, mode shape and damping ratio, to 
access the structural damage. 

Cawley and Adams [1] simply used the 
frequency shifts for different modes to detect the 
damage in composite structures. Tracy and Pardoen 
[2] found that the natural frequencies of a composite 
beam were affected by the size and damage location. 
Shen and Grady [3] indicated that local delamination 
does not have a noticeable effect on global mode 
shape of composite beams, but delamination does 
cause the irregularity of mode shapes. Zou et al. [4] 
provided a thorough review in vibration-based 
techniques and indicated that the above methods 
were unable to detect very small damage and 
required large data storage capacity for comparisons. 
Cornwell et al. [5] utilized the measured mode 
shapes to calculate the strain energy of a plate-like 
structure. Fractional strain energy was then used to 
define a damage index which can locate the damage 
in structure. The method only requires the mode 
shapes of the structure before and after damage. 
Nevertheless, the challenge of the method lies in the 
accuracy of measured modes. A large amount of data 
points are required for further analysis to locate the 
damage. To solve this problem, Hu et al. [6-9] 
adopted the DQM to rapidly obtain the accurate 
solution of strain energy and successfully located 
surface crack damage in various composite laminate 
plates, i.e., unidirectional fiber orientation, cross-ply, 
and quasi-isotropic laminates. It was reported that 
the original DQM was first used in structural 
mechanics problems by Bert et al. [10]. This method 
is able to rapidly compute accurate solutions of 
partial differential equations by using only a few 
grid points in the respective solution domains [11]. 

The objective of this paper is to investigate the 
detection one of the inside damage, i.e., matrix crack, 
in composite laminates using modal analysis. Both 
finite element analysis (FEA) and experimental 
modal analysis (EMA) were performed to obtain the 
mode shapes of laminate before and after damaged. 
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The mode shape displacements were then used to 
calculate the strain energy which was used to define 
a damage index for predicting the locations of 
matrix crack. Finally, x-ray technique was used to 
validate the prediction. 

2. THEORY OF DAMAGE INDEX 

A plate-like beam as shown in Figure 1 is 
subdivided into Nx×Ny sub-region and denoted the 
location of each point by (xi,yj). For laminate plate 
theory, the strain energy of beam during elastic 
deformation is given by 
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where w is the transverse displacement; Dij are 
bending stiffness of the laminate.  

 

 

 

 

Figure 1 A schematic illustrating of beam 

Considering a free-free vibration problem, for a 
particular normal mode, the total strain energy of the 
beam associated with the mode shape kφ  can be 
expressed as 

∫∫⎢⎢
⎣

⎡

∂
∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

=
b a

kkk
k x

D
y

D
x

DU
0 0

2

2

12

2

2

2

22

2

2

2

11 2
2
1 φφφ  

yxy
D

x
D

y
kkk

∂∂
∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂

∂
+

∂

∂ φφφφ 2

2

2

262

2

162

2
4  

dxdy
yx

D k
⎥
⎥

⎦

⎤

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂∂
∂

+
22

664
φ      (2) 

Cornwell et al. [5] suggested that if the damage 
is located at a single sub-region then the change of 
strain energy in sub-region may become significant. 
Thus, the energy associated with sub-region (i,j) for 
the kth mode is given by 
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Similarly, and  represent the total 
strain energy and sub-regional strain energy of the 
k
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Considering all modes, m, in the calculation, damage 
index in sub-region (i,j) is defined as 
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Equation (5) is used to predict the damage location 
in composite laminate beam. Since the partial 
differential terms in strain energy formula are 
difficult to be calculated, an alternative numerical 
method, differential quadrature method (DQM) was 
introduced to solve the problem [9]. 

 
3. DIFFERENTIAL QUADRATURE METHOD 

The basic idea of the DQM is to approximate 
the partial derivatives of a function f(xi,yj) with 
respect to a spatial variable at any discrete point as 
the weighted linear sum of the function values at all 
the discrete points chosen in the solution domain of 
spatial variable. This can be expressed 
mathematically as 
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where i = 1,2,…,Nx and j =1,2,…,Ny are the 
grid points in the solution domain having Nx × Ny 
discrete number of points. and)(n

irC )(m
jsC are the 

weighting coefficients associated with the nth order 
and the mth order partial derivatives of with 
respect to x and y at the discrete point (x

),( ji yxf

i, yj) and 
n=1, 2,…,Nx-1, m=1, 2,…,Ny-1. The weighting 
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coefficients can be obtained using the following 
recurrence formulae 
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where i,r=1,2,…Nx but r≠i ; n= 2,3,…,Nx-1; also 
j,s = 1,2,…,Ny but s≠j; m= 2,3, …,Ny-1. The 
weighting coefficients when r=i and s=j are given as 
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For equations (13) and (14), M(1) and PP

(1) are 
denoted by the following expressions 
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The above equations are applied to calculate the 
strain energy once the kth mode shape 

),(, jikijk yxf=φ  is obtained from the experimental 
results. 

4. FINITE ELEMENT ANALYSIS 

A pre-study was performed by establishing 
finite element model for composite laminate, 
[02/9012/02], with dimension 222×24.7×2.3mm3. 
ANSYS, a FEA commercial code, was used in this 
study. Eight-node linear solid element (SOLID46) 
was used to simulate the laminate beam. The 
element provides a layered version allow up to 250 
different material layers. A convergence study was 
performed to obtain a 23×2×16 mesh model, which 
is sufficient to solve the normal mode problem. A 
breadth-wide matrix crack with 0.1 mm wide was 
created throughout the 90-degree laminate by 
separating the nodes at the elements along the crack. 
Figure 2 shows the finite element model. 

 
 
 
 

 
 
 Matrix crack in 90o laminate

Accelerometer (Mass 21)
Composite laminate (Solid 46)

5                    10                   15 20

Matrix crack in 90o laminate

Accelerometer (Mass 21)
Composite laminate (Solid 46)

5                    10                   15 20

Figure 2 Finite element model 
 

Mechanical properties (E1 = 117.2 GPa, E2 = E3 
= 9.0 GPa, G12 = G13 = 4.9 GPa, ν12 = ν13 = 0.315) for 
composite beam were entered into ANSYS. These 
data were obtained from the quasi-static tensile tests 
of the composite material, AS4/PEEK. Hu et al. [12] 
found that the effects of out-of-plane shear modulus 
G23 and Poisson’s ratio ν23 on the natural frequencies 
are not critical in thin plate. Thus, the values of G23 
and ν23 were assumed to be the same as G12 and ν12 
in this study. Material density was directly measured 
from the specimen, i.e., ρ=1548 kg/m3. A normal 
mode analysis with completely free boundary 
condition was performed to obtain the natural 
frequencies and the associated mode shapes up to 5 
kHz. Hu et al. [12] found that mass effect of 
accelerometer to the natural frequencies of specimen 
is significant. Thus, a mass element (MASS21) with 
0.0015 kg was assigned to fix at the FE model as 
shown in Figure 2. 

5. EXPERIMENTAL MODAL ANALYSIS 

Laminate [02/9012/02] was fabricated using 
thermoplastic composite prepreg AS4/PEEK, and 
then cured at a hot-press machine. After curing, the 
panel was cut to a specimen with dimension 
222×24.7×2.3 mm3 and marked with 24×3 parallel 
grid points. The test beam was vertically hung by 
two cotton strings to simulate a completely free 
boundary condition as shown in Figure 3. Specimen 
was excited by an impact hammer with a force 
transducer throughout all grid points. Dynamic 
responses were measured by an accelerometer fixed 
at the corner. Siglab, Model 20-40, was used to 
record the frequency response functions (FRFs) 
between measured acceleration and impact force. 
ME’Scope, a software for general purpose curve 
fitting, was used to extract modal parameters, i.e., 
natural frequencies, damping ratios and mode shapes, 
from the FRFs. 

Modal testing was conducted on test specimen 
before damage. After test, specimen was subjected to 
tensile test to create matrix crack in 90-degree but 
not in 0-degree laminate. To achieve this, a tiny 
pre-crack was created at both sides of the grip point 
10. Loading was stopped once the loading curve 
suddenly dropped accompanied a harsh noise. The 
location of matrix crack can be verified by using an 
x-ray machine. 
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Figure 3 Experimental Set-up 

6. RESULTS AND DISCUSSION 

A pre-study of finite element analysis was 
performed to evaluate this approach. The first six 
mode shapes obtained from normal mode analysis 
were used to compute the strain energy and damage 
index of the laminate beam. Figure 4 show the 
damage index of laminate for putting a breadth-wide 
matrix crack at 90-degree laminate near the grid 
point 10. The peak values of damage index occur 
around the location of matrix crack. Subsequently, 
Figures 5 and 6 show the predictions of one half 
crack and one quarter lengths of matrix crack at grid 
point 10, respectively. Analytical results show that 
damage indices successfully predict the locations of 
different sizes of matrix cracks. These encouraging 
outcomes lead to the following experimental results. 

 
Figure 4 Damage index for a full crack at grid point 

10 (FEA result) 
 
 

 
Figure 5 Damage index for one half crack at grid 

point 10 (FEA result) 
 

 

 
Figure 6 Damage index for a one quarter crack at 

grid point 10 (FEA result) 
 

Table 1 and 2 list the first eight natural 
frequencies of the laminate beam before and after 
damage, respectively. Checking the difference 
between FEA and EMA results, very good 
correlations are obtained. In FEA results, there are 
not much different in natural frequencies of laminate 
beam before and after damage. However, in EMA 
results, matrix crack damage significantly decreases 
the natural frequencies of laminate beam. In fact, the 
change of natural frequencies is not able to detect 
the damage location in laminate beam. But the 
irregularity of mode shapes caused by damage may 
contribute to this detection. It is noted that mode 
(3,1)y describes the first bending mode in y-direction. 
This particular mode only appears in FEA result but 
not in EMA result, since finite element model 
provides a normal mode analysis for three 
dimensional problems. 

 

Table 1 Natural frequencies of the laminate 
specimen (before damage) 

Mode FEA (Hz) EMA (Hz) △(%)
(3,1) 281 281 0.0 
(2,2) 607 638 -4.9 
(4,1) 823 804 2.4 
(3,2) 1294 1350 -4.1 
(5,1) 1633 1570 4.0 
(3,1)y 2065 2090 -1.2 
(4,2) 2125 2210 -3.8 
(6,1) 2684 2570 4.4 

 

Table 2 Natural frequencies of the laminate 
specimen (after damage) 

Mode FEA (Hz) EMA (Hz) △(%)
(3,1) 281 276 1.8 
(2,2) 607 633 -4.1 
(4,1) 823 802 2.6 
(3,2) 1294 1340 -3.4 
(5,1) 1633 1570 4.0 
(3,1)y 2063 2040 1.1 
(4,2) 2125 2170 -2.1 
(6,1) 2685 2570 4.5 
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Table 3 Mode shapes of (3,1)y and (4,2) 

 
Mode FEA EMA 

2065 Hz 2090 Hz 

(3,1)y  
 

 

2125 Hz 2210 Hz  
 
 

(4,2) 
 

 
 

 

 
Comparing the mode shapes of (3,1)y and (4,2), 

Table 3 shows that contours of these two modes are 
very much alike in both FEA and EMA. It is easy to 
distinguish mode (3,1)y from mode (4,2). However, 
in EMA results, frequency response functions can 
only produce the mode shapes in z-direction. This is 
why two associated mode shapes of EMA in Table 3 
are almost the same, even though the natural 
frequencies are different. 

In EMA result, the prediction of matrix crack of 
laminate beam subjected to tensile test is shown in 
Figure 7. The first six mode shapes were used to 
compute the strain energy and damage index. The 
peak values clearly locate the matrix crack; however, 
many peak values also emerged at some other 
undamaged areas. The deviation in measurement 
may attribute to these pseudomorphs. Cornwell et al. 
[5] suggested that damage indices with values 
greater than two are associated with potential 
damage locations. Figure 8 shows the damage index 
after truncation. The improved outcome clearly 
located the matrix crack damages. Apparently, 
damage indices in Figures 7 and 8 indicate two 
potential damage locations at grid point 10 and the 
area from grid points 14 to 16. It looks like that 
more than one matrix cracks occur inside the 
laminate beam. The prediction has been verified 
using an x-ray machine, Eresco 200MF. Before 
irradiation, damaged beam was treated with 
developer solution, 1,4-Diiodobutane, 99+%, which 
can permeate the beam through the cracks. Output 
voltage and exposure time for the irradiation of 
damaged beam are 25 kV and 36 sec. The picture 
shown in Figure 9 reveals that three matrix cracks 
occurred inside the laminate beam after tensile test. 
One breadth-wide crack is located between grid 
point 9 and 10; the other two short cracks are located 
between grid points 11 and 12. 

 

 
Figure 7 Damage index of EMA result (before 

truncation) 
 

 
Figure 8 Damage index of EMA result (after 

truncation) 
 
 

  
9      10      11     12 

 
Figure 9 Three matrix cracks occur in laminate beam 

(x-ray picture) 
 

To simulate the real case shown in Figure 9, a 
FE model was rebuilt and three matrix cracks were 
created in the model. Analytical result in Figure 10 
indicates that peak values of damage indices around 
the three cracks clearly indicate the damage area. 
Comparing the predictions in Figure 8 and Figure 10, 
damage indices obtained from EMA seem to deviate 
from the real locations of matrix cracks a little bit. 
The outcomes indicate that if the locations of two 
matrix cracks are extremely adjacent to each other, 
the damage index using experiment may not 
precisely predict all damage locations. Nevertheless, 
the peak values of damage indices nearby the matrix 
cracks are good enough to predict the damage in 
laminate beam. 
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Figure 10 Damage index of FEA result (three matrix 
cracks model) 

7. CONCLUSIONS 

Damage index using modal analysis is 
developed to detect a matrix crack in composite 
laminate beam in this paper. This method only 
requires a few mode shapes of the laminate beam 
before and after damage. In fact, the changes of 
mode shapes before and after damage are almost 
invisible. However, the irregularities of mode shapes 
due to matrix crack become significant from the 
perspective of strain energy approach. Both FEA and 
EMA results show that matrix crack locations were 
successfully predicted by using damage indices. 
Since the number of measured points was limited, 
DQM provides us an accurate approach to compute 
strain energy by using only a few grid points in the 
test specimen. This nondestructive method provides 
a reliable, cost-effective approach for damage 
detection in the utilization of composite structures. 
Further research interests lie in the application of 
this method to various composite laminates. 
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應用模態分析於複合材料疊層板之

基材裂縫檢驗 
 

胡惠文 王栢村 李政信 吳承柏 

複合材料與結構實驗室 

國立屏東科技大學 

 

摘要 

本論文應用複合材料疊層樑在破壞前後之模

態振型位移來計算疊層樑之應變能，並利用破壞

前後應變能的比值定義的破壞指標，用來辨認複

合材料疊層樑的破壞位置。本文採用碳纖維/聚二

醚酮(AS4/PEEK)，疊層型式為 [02/90n/02]。破壞

模型為疊層樑內部 90 度疊層之基材裂縫，破壞前

後之模態振型可由有限元素分析與模態實驗分析

獲得，兩種方法均在本文中討論。由於模態實驗

量測的點數有所限制，本文採用微分值積法

(DQM)來計算疊層樑之應變能，此方法可以迅速

精確地計算應變能公式中的偏微分項。由於基材

裂縫是發生在疊層板內部，所以裂縫的位置最終

須由x-ray辨認。結果顯示，本研究發展之破壞指

標可以成功地預測出複合材料疊層樑之基材裂縫

位置。 

關鍵字：模態分析、基材裂縫、複合材料疊層樑、

應變能法 
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