弧度薄殼結構之振動特性分析

ANALYSIS OF VIBRATION CHARATERISTICS FOR THE RADIAL SHELL STRUCTURE

林鴻裕¹ 王栢村² 王明哲³

¹國立屏東科技大學機械工程系副教授 ²國立屏東科技大學機械工程系教授 ³國立屏東科技大學機械工程系研究生

摘要

本此研究是以一弧度薄殼為實驗結構,利用有限元素分析(Finite Element Analysis,FEA)配合實驗模態分析 (Experiment Modal Analysis,EMA),進行模型驗證。首先利用ANSYS軟體對弧度薄殼結構進行模態分析及簡諧 分析,求得其結構之模態參數,即自然頻率及模態振形;然後以實驗模態分析進行實驗,以衝擊鏈激振為輸 入條件,加速度計量測之結果為輸出條件,再經由ME'Scope軟體進行曲線嵌合(curve fitting)動作,求出實驗 之自然頻率及阻尼比;經由以上兩種方法得到之模態參數來進行比較驗證,進而確定有限元素模型之正確 性。

關鍵字:有限元素分析、實驗模態分析、模態參數、模型驗證

1. 前言

工程上常見之薄殼或板殼結構相當多,其中多應 用於建築業、航空業、航海業及各型之壓力容器、鍋 爐、組件外殼…等;而以上種種結構皆需要精確的分 析,以確保安全可信,就振動問題而言,則是其薄殼 工程部件須待克服與研究的關鍵,所以對其整體動態 特性、振動分析、控制及量測需更徹底執行。

有關於薄殼的研究也日趨增加, Chakravorty et al.[9]三人提出利用有限元素分析圓錐形薄殼結構加倍 彎曲後之結果,進而利用作各種工業架構; Plagianakos和Saravanos[10]利用完整機械學和一個有 限元方法為加倍彎曲的薄片製品和輾壓的殼合成架 構; Chang和Chang[11]研究非線性薄殼結構在幾何學 方面的非線性振動分析; Stanley和Ganesan[12]用 fixed-fixed的邊界條件,利用半-分析有限元素方法去 研究具有強勁度的圓柱型薄殼結構的自然頻率; Morozov[13]研究旋轉細絲纏繞合成薄殼的數值和實 驗壓力應變分析,並使用薄殼的膜理論完成平行分 析; Djoudi和Bahai[14]利用線性和幾何非線性分析圓 柱型有限元素薄殼的應變;Lee et al.[15]利用以freefree, simply supported-free和clamped-free三種邊界條 件來探討半球型及圓柱型薄殼的自由振動情形;Vafai et al.[16]研究纖維狀薄殼結構在彈性範圍下沿著斷面 之實驗值與理論薄膜應力之比較; Jeong和Kin[17]研 究一個充滿必定可壓縮流體的一個環型圓柱型薄殼的

線性自由振動分析方法;簡和陳[7]利用時間不連續葛 勒金有限元素法(簡稱TDG法)分析薄殼結構暫態問 題;林和厲[8]利用有限元素和模態實驗分析對圓柱形 薄殼元素進行模型驗證。

本實驗係一自由邊界之弧度薄殼為結構,理論 模型係採用有限元素分析軟體ANSYS8.0建構,利用 殼元素(SHELL63)進行模態分析(Modal Analysis)以獲 得結構之模態參數(Modal Parameters),即自然頻率 (Natural Frequency)和模態振型(Mode Shape);再利用 簡諧分析(Harmonic Analysis)以求得頻率響應函數 (Frequency Response Function,FRF),然後與實驗模態 分析(Experiment Modal Analysis,EMA)之實際結果作 比較,進而完成自由邊界之模型驗證,以便利於往後 其他有關振動之後續研究動理論分析之流程、振動問 題之分析目標、建構模型之方法及考慮因素。

2. 問題定義與分析

2-1. 問題定義:

探討一弧度薄殼結構在頻率0~1000Hz之間,理論 與實驗之動態行為。圖1所示之弧度薄殼結構,其幾 何尺寸及材料性質如表1所示;分別進行理論及實驗 分析,求得其結構之模態參數特性,然後進行結果驗 證。

2-2. 分析目標:

利用有限元素軟體分析(例ansys)和實驗模態分 析(EMA)分別對自然頻率及模態振型作驗證,進一步 達到模型驗證之目標。實驗模態分析(EMA)係以細線 將其薄殼結構懸吊於空中,模擬Free-Free的邊界條件 下進行實驗,求出實際薄殼結構之模態參數(自然頻 率、阻尼比及模態振型)、頻率響應函數(FRF)及關聯 性函數(Coherence Function)。利用有限元素分析(FEA) 進行模態分析及簡諧分析,求得理論值之模態參數及 頻率響應函數;然後以EMA得出實際薄殼之模態參數及 頻率響應函數;然後以EMA得出實際薄殼之模態參數 及頻率響應函數。以EMA之模態特性參數為依據和理 論值之模態特性參數進行驗證,若結果相近,則可以 確認有限元素模型正確;如果結果不相符,則修正有 限元素模型,直到正確,其驗證流程如圖2所示。

3 有限元素分析

本實驗係利用有限元素分析軟體ANSYS8.0來進 行理論分析,所採取之理念有限元素如下:

- 元素選用:此為薄版結構,選用殼元素(Shell63)為分 析模型。
- 元素分割:分割如圖3,在長度邊(L邊)分割40等分, 弧度邊分割32等分,總分割點數為1280 點。
- 位移限制:採用Free-Free狀態,免設定。
- 負荷條件:模態分析:免設定。 簡諧分析:令在節點872處有1N點力作 用。

4. 實驗模態分析

本實驗架構情形如圖4所示,將要實驗之鋁質薄 殼結構利用細線吊掛於空中,藉以模擬Free-Free狀 態,然後將加速度計利用蜂蠟固定在實驗物上,利用 衝擊鎚作衝擊,然後透過SigLab機器運算轉換,可得 到FRF及Coh函數;實驗的鋁質薄殼結構等分畫分為 320點,如圖5所示。本實驗係以固定加速度計位置 (點26),移動衝擊鎚的實驗方式進行實驗。然後利用 ME'Scope軟體進行曲線嵌合(Curve-fitting)步驟,進而 求得鋁質薄殼的模態參數。

圖1.薄殼結構之幾何模型

表1. 薄殼結構之幾何尺寸及材料性質

材料	鋁
半徑 <i>r</i>	0.17 <i>m</i>
長度L	0.385 <i>m</i>
厚度t	0.002 <i>m</i>
密度 ρ	$2710 kg / m^3$
楊氏係數 <i>E</i>	$70 \times 10^9 N/m^2$
蒲松比V	0.33

圖2. 模型驗證流程圖

圖4. 實驗架構示意圖

5. 結果與討論

5-1. 頻率響應函數及關聯性函數之驗證:

實驗與理論之頻率響應函數(FRF)之結果如圖 6(a)、(b)所示,圖6(a)中的(239,26)代表i=239, j=26,其中i為衝擊鎚敲擊位置,即輸入點;j為加速 度計位置,即輸出點,所得之頻率響應函數稱為轉移 頻率響應函數(transfer FRF);圖6(b)之i=26,j=26, 及輸入及輸出皆為第26點,其頻率響應函數又稱為同 點頻率響應函數(point FRF)。其3條曲線分別代表理 論、實驗及 synthesize之頻率響應曲線,其中 synthesize為曲線嵌合之模擬曲線。由圖形看到理論與 實驗的模態尖銳度及函數曲線都相當吻合。

關聯性函數越接近1,代表結構之頻率響應函數 可信度越高,對於圖6之頻率響應函數所對應之關聯 性函數結果如圖7(a)、(b)所示;由圖7可以看到其值 大約接近於1,但是在低頻處附近其值偏低,但是整 體而言其值大致保持在1。

5-2. 自然頻率驗證:

此實驗探討頻率0-1000Hz所包含之模態數有13 個模態,所以自然頻率僅分析前12個模態之自然頻 率,實驗與理論之前12個自然頻率比較如表二所示, 由表2可以得知理論與實驗之自然頻率及其誤差百分 比均在4.5%內,且在正負間變動。

5-3. 阻尼比之驗證:

因為理論分析無法求得阻尼比,故在理論分析 中一率將阻尼比假設為0.01。而實驗可以透過參數估 算的方法求得阻尼比,但是實驗量測會加入對數函數 (Exponential function)之加權函數來消除加速度計響應 的效應,因此所量測之阻尼比並非結構真正的值,所 以必須加以修正,其修正結果如表3所示。

圖6.實驗、實驗合成及理論之頻率響應函數曲線

表2. 理論與實驗自然頻率之誤差百分比

模態數	實驗值(Hz)	理論值(Hz)	誤差百分比(%)
1	58.5	58.145	-0.59
2	114	109.451	-4.16
3	154	150.636	-2.23
4	326	313.865	-3.87
5	359	351.319	-2.19
6	364	368.218	1.46
7	383	380.628	-0.62
8	652	629.943	-3.50
9	663	658.373	-0.70
10	699	690.256	-1.27
11	877	875.489	-0.17
12	918	956.846	4.06
13	959	1004	4.48

表3. 阻尼比之誤差百分比

自然頻率(Hz)	實驗阻尼(%)	修正阻尼(%)
58.5	0.452	0.2559
114	0.335	0.2344
154	0.214	0.1395
326	0.128	0.0928
359	0.0517	0.0197
364	0.068	0.0365
383	0.064	0.0341
652	0.0511	0.0335
663	0.0549	0.0376
699	0.0562	0.0398
877	0.0426	0.0298
918	0.0473	0.0348
959	0.0393	0.0273

5-4. 模態振型之驗證:

此實驗只探討頻率0-1000Hz所包含之模態數, 故實驗上與理論皆列出前13個模態之振型,比較結果 如表4所示。其中物理意義表示法是以長邊為x軸,有 兩個變化;短邊為y軸,也有兩個變化,則定義為 (2,2)-model,如圖8所示;以第一個模態振型來探 討,其實驗值的振型為(2,2)-model,理論值的振型 也是(2,2)-model,兩者的振型是完全吻合的,依序比 較之結果,可以得到其前13個振型都很吻合,所以模 態振型的驗證是成功的。

圖8. 物理意義座標表示圖

振型比較 理論值 實驗值 物理意義 1 (2,2) 頻率(Hz) 58.145 58.5 2 (1,3) 頻率(Hz) 109.451 114 3 (2,3)頻率(Hz) 150.636 154 4 (1,4) 頻率(Hz) 313.865 326 5 (2,4)頻率(Hz) 351.319 359 6 (3,3) 頻率(Hz) 368.218 364 7 (3,4)頻率(Hz) 380.628 383 8 (1,5) 頻率(Hz) 629.943 652 9 (4,4)頻率(Hz) 658.373 663

表4. 振型比較之驗證

10			(4,5)
頻率(Hz)	690.256	699	
11			(3,5)
頻率(Hz)	875.489	877	
12			(5,2)
頻率(Hz)	956.846	918	
13			(5,5)
頻率(Hz)	1004	959	

6. 結論

根據有限元素分析及實驗模態分析的互相比較 後,可以歸納以下幾點結論:

- 從頻率響應函數驗證中,實驗之曲線、Synthesize 之曲線與理論之曲線的結果相當符合;從關聯性 函數驗證中,可看出在反共振點之關聯性趨近於 0,而在共振點附近之關聯性函數都接近於1,表 示實驗結果有相當的正確性。
- 自然頻率驗證中,理論值與實驗值的誤差百分比 皆在4.5%之內,可證明實驗之正確性。
- 阻尼比驗證中,其理論上阻尼比會隨著模態數增 加而減少,其結果如同理論相同。
- 模態振型驗證中,其結果可由表4得知,所看到 之振型都可以很正確的對應到。

綜合以上4點結論,可以證明此薄殼結構的自由邊界 之模型驗證是成功的。

7. 參考文獻

- 洪慶章、劉清吉、郭嘉源,1999,「ANSYS教學 範例」,知城數位科技有限公司,台北。
- 王栢村,2001,「電腦輔助工程分析之實務與應 用」全華科技圖書故份有限公司,台北。
- 王栢村,2003,「ANSYS有限元素分析應用實 例」,課程講義,屏東。

- 王 栢 村 , 2002 ,「 實 驗 模 態 分 析 I. 實 習 講 義」,課程講義,屏東。
- 王 栢 村 , 2002 , 「 實 驗 模 態 分 析 Ⅱ. 實 習 講 義」,課程講義,屏東。
- 王栢村,2002,「實驗模態分析之實務與應 用」,課程講義,屏東。
- 簡秋記、陳鉉文,2003,「時間不連續有線元素 法薄殼振動分析之研究」,碩士論文,私立中原 大學,桃園。
- 林鴻裕、厲光耀,2003,「圓柱型薄殼之振動特 性分析」,碩士論文,國立屏東科技大學,屏 東。
- Chakravorty, D., Bandyopadhyay, J. N., and Sinha, P. K., 1995, "Finite Element Free Vibration Analysis of Conoidal Shells," *Computer and Structures*, Vol. 56, No. 6, pp. 957-978.
- Plagianakos, T. S., and Saravanos, D. A., 2003, "Mechanics and Finite Elements for the Damped Dynamic Characteristics of Curvilinear Laminates and Composite Shell Structures," *Journal of Sound and Vibration*, Vol. 263, pp. 399-414.
- Chang, T. P., Chang, H. C., 2000, "Nonlinear Vibration Analysis of Geometrically Nonlinear Shell Structures," *Mechanics Research Communications*, Vol. 27, No. 2, pp. 173-180
- Stanley, A. J., and Ganesan, N., 1997, "Free Vibration Characteristics of Stiffened Cylindrical Shells," *Computers and Structures*, Vol. 65, No. 1, pp. 33-45.
- Morozov, E. V.,2001, "Theoretical and Experimental Analysis of the Deformability of Filament Wound Composite Shell under Axial Compressive Loading," *Computers and Structures*, Vol. 54, pp. 255-260.
- Djoudi, M. S., and Bahai, H., 2003, "A Shallow Shell Finite Element for the Linear and Non-linear Analysis of Cylindrical Shells," *Engineering Structures*, Vol. 25, pp. 769-778.
- Lee, Y. S., Yang, M. S., Kim, H. S., and Kim, J. H., 2002, A Study on the Free Vibration of the Joined cylindrical-Spherical Shell Structures," *Computers and Structures*, Vol. 80, pp. 2405-2414.
- Vafai, A., Mofid, M., and Estekanchi, H. E., 1997, "Experimental Study of Prefabricated Funicular Shell Units," *Engineering Structures*, Vol. 19, No. 9, pp. 748-759.
- 17. Jeong, K. H., and Kin, K. J., 1998, "Free Vibration of a Circular cylindrical Shell Filled with Bounded Compressible Fluid," *Journal of Sound and Vibration*, Vol. 217, No. 2, pp.197-221.