壓縮機於腳墊邊界之正向分析與驗證

王栢村¹*、陳伯晉¹、張博鈞² ¹屏東科技大學機械工程系 ²瑞智精密股份有限公司 *Email: wangbt@mail.npust.edu.tw

摘要

在空調機系統中,迴轉式壓縮機係以三個橡膠腳墊 作為支撐,以減少振動與噪音的傳遞。本文目標在發 展一套正向分析方法,僅由理論分析可有效合理的模 擬壓縮機於腳墊邊界狀態,取代過往必須有實體壓縮 機,進行實驗模態分析(experimental modal analysis, EMA)以求得結構的剛體模態,才能由有限元素分析 (finite element analysis, FEA)的逆向分析校正腳墊參 數。本文首先進行橡膠腳墊於不同荷重下之彈簧常數 (K)與阻尼係數(C)測定,再發展壓縮機於腳墊邊界之 正向分析方法,運用模型驗證方法驗證分析模型的正 確性。考慮壓縮機在自重負荷下,進行靜力分析,可 獲得三個腳墊的反作用力,並根據橡膠腳墊於不同荷 重下之K與C,以迴歸分析預測壓縮機三個腳墊的K與 C,再據以建構壓縮機於腳墊邊界的有限元素模型及 進行相對應的分析,最後與實驗模態分析結果進行比 對,以驗證正向分析求得的K與C之正確性。結果顯 示,FEA可以合理地預測壓縮機於腳墊邊界的6個剛 體模態,和EMA的結構振動模態物理意義相同。由於 前三個剛體模態的自然頻率較低而有較大差異,不過, 其他主要影響壓縮機振動特性的三個剛體模態,與 EMA結果則有良好對應,推測原因可能源自於壓縮 機自身之側向力所造成之影響,其中側向力之影響評 估還需進一步的分析探討。本文發展的正向分析方法 於腳墊參數之預測,可應用在尚未有實體雛形之壓縮 機,可對有腳墊邊界的壓縮機進行預測分析,有助於 開發設計之實務應用。

關鍵字: 壓縮機、腳墊邊界、正向分析、驗證

1. 前言

在空調機系統中,壓縮機係以三個橡膠腳墊作 為支撐,以減少振動與噪音的傳遞。本文目標為研發 壓縮機於腳墊邊界的正向分析方法。在過往獲取腳墊 參數中需對實體壓縮機結構進行實驗模態分析獲取 結構之剛體模態,並以有限元素分析的逆向分析校正 腳墊參數,最後以模型驗證方法驗證分析模型的正確 性。此方法較為繁雜且需要實體壓縮機模型,是故嘗 試建立一套僅需理論分析的正向分析方法。

壓縮機之橡膠腳墊為本文研究的主軸,王等人[1] 建立了尋求橡膠腳墊的彈簧常數與阻尼係數的方法, 首先將不同重量之質量塊置於橡膠腳墊上並分別進 行實驗模態分析,求得實驗模態參數,對應簡化的單 自由度系統模型,以求得腳墊的彈簧常數與阻尼係數。 王等人[2]將一質量塊安裝於橡膠腳墊上方並進行實 驗模態分析,獲得橡膠腳墊的實驗模態參數,並假設 其為單自由度系統,進而獲得橡膠腳墊的三個軸向平 移與旋轉的彈簧常數與阻尼係數。王等人[3]以對壓縮 機於腳墊邊界進行實驗模態分析獲得的實驗模態參 數為基準,對有限元素分析模型進行修正,結果顯示 壓縮機分析模型結合腳墊模擬方法,可模擬出壓縮機 腳墊邊界實際結構之振動特性。此文運用的方法即為 壓縮機腳墊邊界的逆向分析方法。

有限元素分析為本文重要分析手法。Yu et al. [4]對挖渠設備的關鍵零組件進行模態分析與簡諧響 應分析,結果顯示結構自然頻率避開了運轉時的轉速 頻率,並不會造成共振效應;挖渠設備在運轉狀態下 只會造成非常小的應力與位移,並不會影響到設備的 穩定性。Mia et al. [5] 探討自然頻率於懸臂樑在斷 裂與非斷裂之間的關聯性,結果顯示當懸臂樑斷裂出 現的時候,結構的自然頻率將會衰減,而衰減的程度 會隨著斷裂的位置、深度與開口尺寸而有所不同。王 等人[6]結合有限元素分析與實驗模態分析進行迴轉 式壓縮機的模型驗證,其中以模態參數作為基準,以 驗證分析模型與實際結構的等效性。

本文首先參照參考文獻[2]的橡膠腳墊的彈簧常 數(K)與阻尼係數(C)的測定方法分別進行橡膠腳墊 於2、3、4公斤荷重下的K與C測定與驗證,並以此結 果進行壓縮機於腳墊邊界的正向分析。首先對壓縮機 在自身荷重下,進行靜力分析獲得三個腳墊的反作用 力,並根據橡膠腳墊於不同荷重下的K與C以迴歸分 析的方式預測壓縮機三個腳墊的K與C,再據以建構 壓縮機於腳墊邊界的分析模型及進行模態分析與簡 諧響應分析,最後與實驗模態分析結果[7]進行比對, 以驗證正向分析求得的K與C之正確性。

2. 壓縮機於腳墊邊界正向分析方法之分析理念

本節介紹橡膠腳墊於不同荷重下之K與C測定 之分析理念與壓縮機於腳墊邊界正向分析之分析理 念,將應用於壓縮機於腳墊邊界之正向分析。

2.1 橡膠腳墊於不同荷重下之K與C測定之分析理念

本小節透過參考文獻[2]方法進行橡膠腳墊於不 同荷重下之K與C測定,圖1為橡膠腳墊於不同荷重下 之K與C測定之分析流程圖,首先進行有限元素分析

與實驗模態分析,分別獲取理論模態參數與實驗模態 參數,再相互比較並修正材料參數完成模型驗證,再 透過運算式計算出橡膠腳墊於不同荷重下之K與C。 其中運算式由參考文獻[2]取得,其中是以假定腳墊與 質量塊為單自由度系統並由運動方程式推算獲得。

利用獲得的腳墊於不同荷重下之K與C套入質量 塊凹槽處,以取代橡膠腳墊的實際結構,並進行模態 分析與實驗模態分析結果做比對,以驗證其正確性。 最後將驗證成功後的橡膠腳墊於不同荷重下之K與C 應用於壓縮機於腳墊邊界之正向分析。

圖1 橡膠腳墊於不同荷重下之K與C測定分析流程圖

2.2 壓縮機於腳墊邊界正向分析之分析理念

利用測定完成之橡膠腳墊於不同荷重下之K與C 進行壓縮機於腳墊邊界之正向分析,圖2為壓縮機於 腳墊邊界之正向分析流程圖,首先對壓縮機在自身荷 重下,進行靜力分析獲得三個腳墊的反作用力,並運 用橡膠腳墊於不同荷重下的K與C以迴歸分析的方式 預測壓縮機三個腳墊的K與C,再據以建構壓縮機於 腳墊邊界的有限元素分析模型,分別進行模態分析與 簡諧響應分析,獲得理論模態參數與頻率響應函數, 最後與實驗模態分析結果[7]進行比對,以驗證正向分 析求得的K與C之正確性。

圖2 壓縮機於腳墊邊界之正向分析流程圖

3. 橡膠腳墊於不同荷重下之K與C測定

本節進行橡膠腳墊於2、3、4公斤荷重下之K與 C測定,以利後續壓縮機於腳墊邊界之正向分析。

3.1 橡膠腳墊於不同荷重下之模型驗證

首先進行橡膠腳墊於不同荷重下之有限元素分 析,以橡膠腳墊與3公斤荷重質量塊為例,圖3為橡膠 腳墊與質量塊之實體結構圖,圖4為橡膠腳墊與質量 塊之有限元素模型圖,其中額外建構一質量塊彈性支 撐模型,以利之後驗證測定出來的K與C。以橡膠腳墊 與質量塊的實體結構建構有限元素分析模型,其中元 素選用立方體元素Solid 186與Solid187,共切割出了 9,635個元素與15,990個節點,位移限制於橡膠腳墊底 部設置固定邊界,以模擬橡膠腳墊立於桌上的狀況, 而負荷條件設定為橡膠腳墊與質量塊自身的重量。建 構完有限元素模型後,進行模態分析,獲得理論模態 參數,其中包含自然頻率、模態振型。將與橡膠腳墊 與質量塊之實驗模態參數進行比較。

圖3 橡膠腳墊與質量塊之實體結構圖

(a) 橡膠腳墊與質量塊之有限元素模型圖

(b) 質量塊於彈性支撐之有限元素模型圖 圖4 橡膠腳墊與質量塊之有限元素模型圖

接著進行橡膠腳墊與質量塊之實驗模態分析, 圖5為橡膠腳墊與質量塊之佈點規劃圖,圖6為橡膠腳 墊與質量塊之實驗架設圖,在質量塊上共佈8個點, 以中型衝擊鎚為驅動器,加速規為感測器,以移動衝 擊鎚,固定加速規的方法進行實驗。於1~8號點垂直 敲擊實驗,並於1~4號點於側向敲擊實驗,共12筆數 據,最後將數據進行彙整,進行曲線嵌合並擷取實驗

模態參數,其中包含自然頻率、模態振型與模態阻尼 比,將此結果與理論模態分析結果進行比較。

最後將取得的理論模態參數與實驗模態參數進 行比對,表1為橡膠腳墊與質量塊之自然頻率比較表, 表2為橡膠腳墊與質量塊之模態振型比較表,其中於 實驗模態分析中的Z方向旋轉剛體模態並未測定到, 推測為響應太小,並以Z方向平移之剛體模態作為基 準進行楊氏係數修正,在經過楊氏係數修正後自然頻 率誤差在10%內,且模態振型有相對應之情形,模型 驗證成功。後續將應用於橡膠腳墊於不同荷重下之K 與C測定。

圖5 橡膠腳墊與質量塊之佈點規劃圖

圖6 橡膠腳墊與質量塊之實驗架設圖

表1 橡膠腳墊與質量塊之自然頻率比較表 (a) 楊氏係數修正前之自然頻率比較表

	揭氏係數修正前之自然頻率比較表								
	FEA		ЕМА						
Mode	Natural frequency (Hz)	Mode	Natural frequency (Hz)	Damping (%)	Error (%)	物理意義			
F-01	1.75					Rigid - (θ_z)			
F-02	2.07	E 01	2.05	8 47	1.14%	Rigid (X V)			
F-03	2.08	E-01	2.05	0.47	1.42%	$\operatorname{Rigid} - (X, 1)$			
F-04	9.26	E-02	8.51	5.92	8.86%	Rigid - (θ_y)			
F-05	9.27	E-03	10.10	2.17	8.21%	Rigid - (θ_x)			
F-06	19.05	E-04	18.80	7.17	1.34%	Rigid - (Z)			

表1 橡膠腳墊與質量塊之自然頻率比較表(續) (b) 楊氏係數修正後之自然頻率比較表

	楊氏係數修正後之自然頻率比較表							
FEA			EMA					
Mode	Natural frequency (Hz)	Mode	Natural frequency (Hz)	Damping (%)	Error (%)	物理意義		
F-01	1.73					Rigid - (θ_z)		
F-02	2.03	F 01	2.05	8 4 7	-1.18%	Rigid - (X V)		
F-03	2.03	E-01	2.05	0.47	-0.89%	Kigid - (X, I)		
F-04	9.13	E-02	8.51	5.92	7.24%	Rigid - (θ_y)		
F-05	9.13	E-03	10.10	2.17	-9.57%	Rigid - (θ_x)		
F-06	18.81	E-04	18.80	7.17	0.06%	Rigid - (Z)		

表2 橡膠腳墊與質量塊之模態振型比較表

F-01_1.73 Hz	F-02_2.03 Hz	F-03_2.03 Hz
Rigid - (θ_z)	Rigid - (X,Y)	Rigid - (X,Y)
	E-01_2	2.05HZ
		i.
	Rigid -	• (X,Y)
F-04_9.13Hz	F-05_9.13Hz	F-06_18.81Hz
Rigid - (θ_x)	Rigid - (θ_y)	Rigid - (Z)
E-02_8.51Hz	E-03_10.1HZ	E-04_18.80Hz
Rigid - (θ_r)	Rigid - (θ_{ν})	Rigid - (Z)

3.2 橡膠腳墊於不同荷重下之K與C測定

首先運用上小節測定完成之實驗模態參數與質 量塊質量及質量塊質量慣性矩進行橡膠腳墊於不同 荷重下之K與C測定,本小節以腳墊於3公斤荷重下之 K與C測定為例,表3為橡膠腳墊於不同荷重下之K與 C測定示意表,其中實驗模態參數Z方向旋轉的剛體 模態以有限元素分析結果代替,並以此方法進行橡膠 腳墊於不同荷重下之K與C測定。

接著將測定完成的腳墊於不同荷重下之K與C套 入上節建構的質量塊於彈性支撐之有限元素模型中 取代橡膠腳墊實際結構並進行模態分析,獲得理論模 態參數,其中包含自然頻率與模態振型,將與實驗模 態分析結果進行比較,表4為質量塊於彈性支撐之自 然頻率比較表,表5為質量塊於彈性支撐之模態振型

比較表,結果顯示自然頻率誤差在0.2%以下,且模態 振型對應良好,代表壓縮機於不同荷重下之K與C驗 證成功。

最後與參考文獻[1]中的橡膠腳墊於0.5、1、1.5公 斤荷重下之K與C進行綜合比較,探討其關聯性。表6 為橡膠腳墊於不同荷重下之K與C總表,圖7為橡膠腳 墊於不同荷重下之K與C數值分布圖,由圖中可發現 橡膠腳墊於0.5、1.0、1.5公斤荷重下與橡膠腳墊於2、 3、4公斤荷重下的K於X平移與Y平移中數值並沒有呈 現連續現象,推測為荷重的質量塊幾何外形差異所造 成的影響,是故僅採用橡膠腳墊於2、3、4公斤荷重 下之K與C應用於壓縮機於腳墊邊界之正向分析。

表3 橡膠腳墊於不同荷重下K與C測定示意表

	橡膠腳墊於 3KG 荷重下之 K 與 C 測定示意表									
EMA&FEA			有子虫							
Mode	Natural frequency (Hz)	Damping (%)	質量慣 性矩	彈簧常數	數值	阻尼係數	數值			
F-01	1.73		0.0073 kg.m ²	Kθ _z (N-m/rad)	0.87	$C\theta_z$ (N*m*s/rad)	0.014			
F 01	2.05	8 47	3kg	Kx (N-m)	497.72	Cx (N*s/m)	6.546			
E-01	2100	0.17	JAG	Ky (N/m)	497.72	Cy (N*s/m)	6.546			
E-02	8.51	5.92	0.0038 kg.m ²	$\frac{K\theta_y}{(N-m/rad)}$	10.99	$C\theta_y$ (N*m*s/rad)	0.024			
E-03	10.10	2.17	0.0038 kg.m ²	$\frac{K\theta_x}{(N-m/rad)}$	15.48	$C\theta_x$ (N*m*s/rad)	0.011			
E-04	18.80	7.17	3kg	Kz (N/m)	41859.76	Cz (N*s/m)	50.817			

表4 質量塊於彈性支撐之自然頻率比較表

	質量塊於彈性支撐之自然頻率比較表								
EMA&FEA			彈性	支撑模型					
Mode	Natural frequency (Hz)	Damping (%)	Mode	Natural frequency (Hz)	誤差 (%)	物理意義			
F-01	1.73	-	M-01	1.73	0.19%	Rigid - (θ_z)			
E-01	2.05	8.47	M-02 M-03	2.05 2.05	0.02%	Rigid - (X,Y)			
E-02	8.51	5.92	M-04	8.51	0.28%	Rigid - (θ_y)			
E-03	10.10	2.17	M-05	10.10	0.24%	Rigid - (θ_x)			
E-04	18.80	7.17	M-06	18.80	0.15%	Rigid - (Z)			

F-01_1.73 Hz	E-01_2	2.05 Hz	
Rigid - (θ_z)	Rigid - (X,Y)		
M-01_1.73Hz	M-02_2.05HZ	M-03_2.05Hz	
Rigid - (θ_z)	Rigid - (X)	Rigid - (Y)	

國立虎尾科技大學 雲林縣虎尾鎮 摘要編號#379

表) 質重塊於弾性支撐之模態振型比較表(

E-02_8.51 Hz	E-03_10.1 Hz	E-04_18.80 Hz
Rigid - (θ_x)	Rigid - (θ_y)	Rigid - (Z)
M-04_8.51 Hz	M-05_10.1 HZ	M-06_18.80 Hz
Rigid - (θ_r)	Rigid - (θ_{ν})	Rigid - (Z)

表6 橡膠腳垫於不同荷重下之K與C總表 (a) 橡膠腳垫於不同荷重下之彈簧常數總表

	Kx (N/m)	Ky (N/m)	Kz (N/m)	Kθx (N-m/ rad)	Kθy (N-m/ rad)	Kθz (N-m/rad)			
0.5kg	999.13	1055.47	40970.51	12.39	9.91	1.09			
1.0kg	510.38	516.07	40857.38	16.36	16.47	1.14			
1.5kg	192.03	210.07	40325.24	26.43	25.84	1.04			
2.0kg	729.69	729.69	41913.57	12.34	12.34	1.29			
3.0kg	497.72	497.72	41859.76	15.48	10.99	0.87			
4.0kg	287.80	287.80	37938.76	23.43	13.46	1.56			

(b) 橡膠腳墊於不同荷重下之阻尼係數總表

	香	勝脚型が	(个问何)	皇之弹阻庀傍	教對照表	
	Cx (N*s/m)	Cy (N*s/m)	Cz (N*s/m)	C0x (N*m*s/ rad)	Сөу (N*m*s/ rad)	Cθz (N*m*s/ rad)
0.5kg	6.52	13.38	86.37	0.007	0.007	0.002
1.0kg	6.22	10.67	70.80	0.015	0.013	0.003
1.5kg	5.90	7.82	54.38	0.024	0.035	0.016
2.0kg	6.00	6.00	45.23	0.024	0.024	0.011
3.0kg	6.55	6.55	50.82	0.010	0.024	0.007
4.0kg	7.87	7.87	47.99	0.008	0.039	0.011

(a) 橡膠腳墊於不同荷重下之彈簧常數數值分布圖圖7 橡膠腳墊於不同荷重下之K與C數值分布圖

(b) 橡膠腳墊於不同荷重下之阻尼係數數值分布圖 圖7 橡膠腳墊於不同荷重下之K與C數值分布圖(續)

4. 壓縮機於腳墊邊界之正向分析與驗證

本節進行壓縮機於腳墊邊界之正向分析,並與 實驗模態分析結果[7]進行比對,以驗證方法之正確性。

4.1 壓縮機之靜力分析

首先對壓縮機在自身荷重下,進行靜力分析獲得 三個腳墊的反作用力,其中包含正向力與旋轉力,圖 8為壓縮機實體結構示意圖,圖9為壓縮機有限元素模 型圖,以壓縮機實體結構進行有限元素模型建構,其 中元素形式採用立方體元素Solid185、Solid186與 Solid187,共分割出426,367個元素與991,800個節點, 而位移限制於壓縮機腳架與橡膠腳墊連接處設定為 固定邊界,負荷條件設定為自身重量。並以此有限元 素分析模型進行靜力分析,求得壓縮機三個橡膠腳墊 的反作用力。表7為壓縮機靜力分析結果表,為模擬 腳墊荷重狀況,將採用Z方向之反作用力應用於壓縮 機於腳墊邊界之正向分析。

圖8 壓縮機實體結構示意圖

圖9 壓縮機有限元素模型圖

	表7	壓縮	機靜	力	分析	結果表	έ
--	----	----	----	---	----	-----	---

壓縮機靜力分析結果表(Reaction Force)					
Unit: N	PAD1	PAD2	PAD3		
X axis	58.105	-89.664	31.558		
Y axis	83.686	-15.391	-68.295		
Z axis	38.159	29.157	19.596		

壓縮機靜力分析結果表(Reaction Moment)

Unit: N.m	PAD1	PAD2	PAD3
X axis	-0.602	0.007	0.255
Y axis	0.349	0.497	0.137
Z axis	0.006	-0.012	-0.013

4.2 壓縮機於腳墊邊界之K與C測定

接著根據靜力分析的結果結合橡膠腳墊於不同 荷重下之K與C,以迴歸分析的方式預測壓縮機三個 腳墊的K與C,圖10為壓縮機於腳墊邊界之K與C分析 示意圖,表8為壓縮機於腳墊邊界之K與C總表,並根 據3個腳墊的K與C來建構壓縮機於腳墊邊界之有限 元素分析模型,其中元素形式採用立方體元素 Solid185、Solid186與Solid187,共分割出426,367個元 素與991,800個節點,而位移限制為壓縮機腳墊邊界, 其中腳墊邊界之設定以壓縮機三腳墊的K與C進行設 定,另外負荷條件於模態分析不需設定;於簡諧響應 分析時設定1N之外力。並以此進行模態分析與簡諧 響應分析,獲得理論模態參數與頻率響應函數,將與 實驗模態分析結果進行比對。

(a) 壓縮機於腳墊還芥之彈黃常數分析示意圖 圖10 壓縮機於腳墊邊界之K與C分析示意圖

(b) 壓縮機於腳墊邊界之阻尼係數分析示意圖 圖10 壓縮機於腳墊邊界之K與C分析示意圖(續)

表8 壓縮機於腳墊邊界之K與C總表 (a) 壓縮機於腳墊邊界之彈簧常數總表

壓縮機於墊邊界之彈簧常數總表							
編號	荷重	Kx (N/m)	Ky (N/m)	Kz (N/m)	Kθx (N-m/ rad)	Kθy (N-m/ rad)	Kθz (N-m/rad)
Pad1	3.89	307.55	307.55	38793.96	22.04	12.77	1.36
Pad2	2.97	510.59	510.59	40620.38	16.95	12.25	1.24
Pad3	2	726.01	726.01	42558.10	11.54	11.70	1.10

(b) 壓縮機於腳墊邊界之阻尼係數總表

壓縮機於腳墊邊界之阻尼係數總表							
編號	荷重	Cx (N*s/m)	Cy (N*s/m)	Cz (N*s/m)	Cθx (N*s*m/ rad)	Сөу (N*s*m/ rad)	Cθz (N*s*m/ rad)
Pad1	3.89	7.62	7.62	49.21	0.01	0.04	0.01
Pad2	2.97	6.77	6.77	47.96	0.01	0.03	0.01
Pad3	2	5.87	5.87	46.63	0.02	0.02	0.01

4.3 模型驗證

最後將有限元素分析的分析結果與實驗模態分 析結果[7]進行比對,表9為壓縮機於腳墊邊界之自然 頻率比較表,表10為壓縮機於腳墊邊界之模態振型比 較表,結果顯示,有限元素分析可以合理地預測壓縮 機於腳墊邊界的6個剛體模態,和實驗模態分析的結 構振動模態物理意義相同。雖然前三個剛體模態的自 然頻率有較大差異,不過其他三個剛體模態與EMA 結果則有良好對應,推測原因可能源自於壓縮機自身 之側向力所造成之影響,其中側向力之影響評估還需 進一步的分析探討。圖11為壓縮機於腳墊邊界之頻率 僅應函數比較圖,圖中發現於15Hz以下之自然頻率峰 值有偏移之現象,其餘自然頻率之峰值對應較好,推 測為於模態分析時自然頻率誤差所造成的影響。

表9 壓縮機於腳墊邊界之自然頻率比較表

壓縮機於腳墊邊界之自然頻率比較表						
ЕМА		FEA				
Mode	Natural frequency (Hz)	Mode	Natural frequency (Hz)	Error (%)	物理意義	
E-01	4.38	F-01	1.93	-55.94%	Rigid - (Y)	
E-02	4.38	F-02	2.06	-52.97%	Rigid - (X)	
E-03	9.69	F-03	3.8	-60.78%	Rigid - (θ_z)	
E-04	14.7	F-04	13.96	-5.03%	Rigid - (Z)	
E-05	17.8	F-05	15.81	-11.18%	Rigid - (θ_x)	
E-06	19.1	F-06	18.88	-1.15%	Rigid - (θ_y)	

表10 壓縮機於腳墊邊界之模態振型比較表

E-01_4.38Hz	E-02_4.38 Hz	E-03_9.69 Hz	
La constanti de la constanti de La constanti de la constanti de La constanti de la constanti de La constanti de la constanti de	in the second se	Hard Hard Hard Hard Hard Hard Hard Hard	
Rigid - (Y)	Rigid - (X)	Rigid - (θ_z)	
F-01_1.93 Hz	F-02_2.06HZ	F-03_3.80 Hz	
Rigid - (Y)	Rigid - (X)	Rigid - (θ_z)	
E-04_14.7Hz	E-05_17.8Hz	E-06_19.1 Hz	
And the second s	En el mananza En el	En altra man En	
Rigid - (Z)	Rigid - (θ_x)	Rigid - (θ_y)	
F-04_13.96 Hz	F-05_15.81 HZ	F-06_18.88 Hz	
Rigid - (Z)	Rigid - (θ_x)	Rigid - (θ_y)	

(a) X方向之頻率響應函數比較表

(b) Y方向之頻率響應函數比較表

(c) Z方向之頻率響應函數比較表

圖11 壓縮機於腳墊邊界之頻率響應函數比較表

5. 結論

本文首先進行橡膠腳墊於不同荷重下之K與C測 定與驗證,並以此結果進行壓縮機於腳墊邊界之正向 分析,獲得壓縮機三個腳墊的K與C,再據以建構壓縮 機於腳墊邊界的有限元素模型及進行模態分析與簡 諧響應分析,最後與實驗模態分析結果[7]進行比對, 以驗證正向分析求得的K與C之正確性,獲得了以下 幾點結論。

- (1) 本文建立了壓縮機於腳墊邊界之正向分析方法, 能僅以理論分析的方式求得壓縮機腳墊邊界的 K與C,以取代過往需要實體壓縮機結構的逆向 分析方法。
- (2) 在橡膠腳墊於不同荷重下的K與C測定中,橡膠 腳墊於0.5、1.0、1.5公斤荷重下之K與C和橡膠 腳墊於2、3、4公斤荷重下之K並沒有呈現連續 現象,推測為質量塊幾何外形不同所造成的影

國立虎尾科技大學 雲林縣虎尾鎮 摘要編號#379

響。

- (3) 在壓縮機於腳墊邊界之自然頻率與模態振型比對中,由於前三個剛體模態的自然頻率較低而 有較大差異,不過其他主要影響壓縮機振動特 性的三個剛體模態,與實驗模態分析結果則有 良好對應,且模態振型有相對應之狀況,推測原 因可能源自於壓縮機自身之側向力所造成之影響。
- (4) 在壓縮機於腳墊邊界之頻率響應函數的比對中發現於15Hz以下之自然頻率峰值有偏移之現象, 而於其餘自然頻率峰值對應較好,推測為於模態分析時自然頻率誤差所造成的影響。
- (5) 本文所發展的正向分析方法於腳墊參數之預測, 可應用在尚未有實體雛形之壓縮機,可對有腳 墊邊界的壓縮機進行預測分析,有助於開發設 計之實務應用。

6. 誌謝

本文承蒙瑞智精密股份有限公司107學年度產學 合作計畫「壓縮機輸入源對系統振動噪音評估及響應 預測技術之發展與應用」經費補助,特此致謝。

7. 参考文獻

- 王栢村,王文志,陳柏儫,余易璋,林聖傑,「橡 膠腳墊剛性和阻尼係數的實驗研究」,精密機械 與製造科技研討會論文集,屏東,論文編號: G011,(2015)。
- 王栢村,張博鈞,梁秀瑋,「壓縮機橡膠腳墊之 模擬與驗證」,中華民國振動與噪音工程學術研 討會,高雄,(2017)。
- 王栢村,張博鈞,梁秀瑋,林谷樺,「壓縮機於 腳墊邊界之模擬與實驗驗證」,中華民國力學學 會第四十一屆全國力學會議,台南,論文編號: D-1154,(2017)。
- Y. Yu, S. Zheng, H. Li, X. Wang, and Y. Tang, "Modal and Harmonic Response Analysis of Key Components of Ditch Device Based on ANSYS," Procedia Engineering, Vol. 174, pp. 956-964 (2017).
- S. Mia, S. Islam, and U. Ghosh, "Modal Analysis of Cracked Cantilever Beam by Finite Element Simulation," Procedia Engineering, Vol. 194, pp. 509-516 (2017).
- 王栢村,林聖傑,楊佩宜,張博鈞,林谷樺,「結 合CAE與EMA於迴轉式壓縮機之模型驗證」, 第二十四屆中華民國振動與噪音工程學術研討 會,高雄,第159~165頁,(2016)。
- 王栢村,「壓縮機與室外機系統組裝匹配基於振 動噪音之設計分析與實驗探討」,瑞智精密有限 公司專題結案報告,桃園,(2019)。

Forward Analysis and Model Verification for Simulation of Compressor in Pad Boundary

Bor-Tsuen Wang¹, Po-Chin Chen¹, Bo-Jun Zhang² ¹Department of Mechanical Engineering National Pingtung University of Science and Technology ²Rechi Precision Co., LTD

Abstract

Rotary Compressor is supported with three rubber pads in conditioner to reduce noise and vibration transmission. This work aims to develop the forward analysis method to obtain proper dynamic parameters for pads and simulate the compressor in pad boundary condition. The previous approach in determining pad parameters needs to perform experimental modal analysis (EMA) on the compressor and obtains structural rigid body modes. The inverse analysis by finite element analysis (FEA) on the compressor in pad boundary can then be carried out to calibrate the pad parameters base on those rigid body modes, i.e. model verification process. In this work, the pad's equivalent spring constant (K) and damping coefficient (C) at different loadings are obtained firstly. The proposed forward analysis approach is to perform static analysis on the compressor with pads subject to gravity load and so forth to get the reaction forces on the pads. As known in priori for the pad's K and C dependent on applied loads, the corresponding K and C for each pad on compressor can be predicted according the pad's reaction forces by regression method. The FE model for compressor with proper pad's K and C can then be constructed to perform analysis accordingly. Results show six rigid body modes of compressor in pad boundary can be reasonably predicted and agreed with those from EMA. Although the first three predicted modal frequencies are not accurate enough for small frequencies, the others mostly affecting compressor's vibration are in a good agreement with those by EMA. The possible cause for the discrepancy may come from the calibration of pad's K and C due to lateral force effect that should be further clarified in the future. Nevertheless, the forward analysis approach is shown possible and applicable to the design analysis of compressor with pad boundary before the prototype is made.

Keywords: Compressor, pad, forward analysis, model verification.