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A bell plate made of a flat sheet of metal may produce a sound like a bell. This work pre-
sents the design analysis of pentagonal shape of flat steel plate to produce harmonic sound. 
The parametric geometry model for the pentagonal plate is first defined to construct finite 
element model. By performing theoretical modal analysis (TMA), the plate’s vibration 
modes, i.e. natural frequencies and corresponding mode shapes, can be obtained. From vi-
bration modal characteristics of the pentagonal plate, the generated sound modes as well as 
sound frequencies can be postulated. The generated percussion sound response depends on 
the structural mode shapes for different striking locations. The optimization problem is then 
formulated to optimally design the plate dimensions such that the pentagonal plate can pro-
duce harmonic sound, i.e. the overtone frequency is twice as the fundamental frequency. 
The optimum design pentagonal plate is manufactured and performed experimental modal 
analysis (EMA). The plate’s modal parameters obtained from TMA and EMA are com-
pared to verify the design. The percussion sound test on the pentagonal plate is also carried 
out to show the effective design for harmonic sound. Finally, a set of pentagonal plates 
consisting of two octaves musical notes is analyzed and made to fabricate the percussion 
instrument. This work shows the design process for the pentagonal bell plate from design 
analysis to experimental verification.  
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1. Introduction 
Percussion instrument is a kind of musical instrument that can be stricken, shaken or rubbed. A typi-

cal set of percussion instrument may contain two or three octave musical notes so that the wide range 
of musical sound can be played. This work aims to develop a set of pentagonal plates with two octave 
musical notes, including the sharp and flat tones. The special pentagonal plate originally comes from 
the bell plate [1]. Lavan et al. [1] presented the pentagonal plate that can produce the bell-like sound. 
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With the primary study on the pentagonal plate, we found the percussion sound of plate is dependent on 
the first few vibration modes. The plate geometry can be optimized to generate the harmonic sound, i.e. 
the overtone frequency is twice as the fundamental frequency.  

McLachlan [2] discussed the relation between sound characteristics of musical bell and its geometry. 
Both finite element analysis (FEA) and sound measurement were performed to compare structural nat-
ural frequencies and realize the sound generation mechanism. The major factors affecting sound char-
acteristics are bell thickness, curvature, angle, height and width. Rabenstein et al. [3] showed the math-
ematical model for the tubular bell and studied physical parameters for sound radiation. Bork [4] modi-
fied the undercut of xylophone bar to alter the bar’s vibration mode and tune the percussion sound fre-
quency. Lee et al. [5] used FEA and experimental modal analysis (EMA) to examine vibration modes 
of Korea bell and predict bell’s vibration and sound radiation. Pan [6] discussed the special sound ef-
fect of Chinese bell that can produce different notes for different striking locations. Ansari [7] investi-
gated the irregularity in casting bell such as geometry, material properties and possible local defects. 
He used FEA to predict the fundamental frequency in comparison with that from EMA to examine the 
variation effect of geometry on sound response. Bretos et al. [8] also applied FEA to modal analysis of 
wooden bars to discuss the geometry effect on vibration modes as well as material properties, such as 
Young’s modulus for non-uniform material. Jing [9] simulated sound and vibration for a Chinese bell 
with single and double tones.  

For the improvement of musical sound and effective design and manufacture, researchers apply 
optimization method to musical instrument development. Wang and Jian [10] used FEA and EMA to 
obtain structural natural frequencies and mode shapes and so forth to design the chord plate that can 
produce the chord sound. Petrolito and Legge [11] proposed optimization method to target the desired 
frequencies of percussive beams by changing the undercut. Wang et al. [12] developed a new type of 
Harmonic Glass Plate (HGP) by using FEA and EMA. The HGP can generate several overtone fre-
quencies with harmonics. McLachlan et al. [13] studied the bell geometry effect on vibration properties 
by FEA and optimally design the bell shape to come out with good quality of sound. Wang et al. [14] 
have the design of chord sound plate (CSP) that can produce the triad sound with one strike on the CSP. 
Wang and Hsieh [15] presented two types of metal bars that can generate the chord sound, and the pa-
tent was filed [14]. Wang et al. [16] proposed the new method by using multiple sine waves to formu-
late the geometry shapes of sound plate, in particular for harmonic sound plate (HSP).  

This work aims to design the pentagonal plate to have two harmonics and reveal better sound re-
sponse. The original shape is adopted from Lavan et al. [1]. Section 2 conveys the design concept and 
procedures. The parametric geometry model is first defined and performed theoretical modal analysis 
(TMA) by finite element method (FEM). The optimization problem is then formulated to design the 
dimensions of pentagonal plate such that the desired percussion sound can reveal two harmonics. The 
first harmonic is the fundamental frequency and referred to the musical note’s frequency, and the sec-
ond harmonic frequency is twice of the first. The pentagonal plate for C6, which standard frequency is 
1046.5 Hz, is shown for its frequency response functions and vibration modes obtained from FEA and 
EMA, respectively. Section 3 shows the design verification for C6 pentagonal plate and presents the 
percussion sound characteristics. A complete set of pentagonal plates is manufactured with 25 pieces 
for two octave musical notes from F5 (698 Hz) to F7 (2794 Hz). This work shows the design and man-
ufacture of pentagonal plate percussion instrument and details the design analysis and experimental 
verification. 

2. Design concept for the pentagonal plate with two harmonics sound 
Figure 1(a) shows the basic pattern of pentagonal plate originally from Lavan et al. [1]. The key ge-

ometry parameters of the pentagonal plate as shown are L, W, H1, H2 and H3. The dimensions shown 
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in Figure 1(a) are the final design of C6 (1046.5 Hz) pentagonal plate. Figure 1(b) is the finite element 
model, and Figure 1(c) is the real structure.  

The objective of design analysis is to obtain the precise geometry of pentagonal plate such that the 
percussion sound can produce two harmonics sound, i.e. the first and second harmonics. The first har-
monic sound should have the same frequency as the standard frequency of musical note, which fre-
quency for C6 is 1046.5Hz and also known as the fundamental frequency. The second harmonic sound 
frequency is also referred as the overtone frequency and should be twice of the fundamental frequency.  

As known, the percussion sound response of such a plate depends on the lateral vibration modes. 
The primary study is to perform TMA on the pentagonal plate and characterize the vibration modes. In 
particular, the characteristics of plate mode shapes are important for selection of striking locations. Sec-
tion 3 will present the pentagonal plate’s natural frequencies and corresponding mode shapes obtained 
from FEA and EMA, respectively.  

The design goal for the pentagonal plate is clear for producing two harmonics sound, and structural 
modal analysis on the parametrized pentagonal plate is ready. The next step is to formulate the optimi-
zation problem and carry out the optimum design analysis procedure for the pentagonal plate. There are 
three items to define, including design variables, objective function and constraints.  

First, the design variables are those geometry dimension variables as shown in Figure 1(a). Second, 
the objective function is to be minimized and defined as the root mean square (RMS) value of frequen-
cy errors between the target frequencies and analysis frequencies. The frequency errors include those 
two desired harmonic modal frequencies. In TMA, the challenge is to identify the vibration modes that 
will be excited to produce the sound. By prescribing the striking location, the mode shape response at 
the prescribed location for each vibration mode is monitored and so forth the correct natural frequen-
cies can be extracted to calculate the objective function automatically. If the design variables can be 
optimally determined, the RMS value of frequency errors is minimized and the design is fit.  

Third, the constraints should be properly defined. For the design of the percussion instrument, the 
first mode of percussion sound should have the same frequency as the standard frequency of musical 
note. The thumb of rule for the frequency error is ±0.34%. Therefore, the target mode’s natural fre-
quency should be less than the criterion and the individual frequency error is as the constraint.  

In optimum analysis, the iteration process is essential. The comparison of analysis natural frequen-
cies and target musical note’s frequencies is conducted to determine if the design is appropriate. Sec-
tion 3 will show the designed C6 pentagonal plate’s sound response that fulfils the design goal. The 
complete set of percussion instrument consisting of 25 pieces of pentagonal plates is shown in Section 
4. 

     
(a) Parametric geometry model      (b) Finite element model  (c) real structure photo 

Figure 1: Pentagonal plate for C6, where the dimensions are for C6. 



ICSV26, Montreal, 7-11 July 2019 
 

 
4  ICSV26, Montreal, 7-11 July 2019 

3. Design verification of pentagonal plate for C6 
This section shows the design verification for the C6 pentagonal plate. FEA is adopted to perform 

TMA on the pentagonal plate, which finite element model is shown in Figure 1(b). The pentagonal 
plate is made of stainless steel with 3mm thickness and manufactured by CNC laser cut. Figure 1(c) 
shows the real structure of C6 pentagonal plate. 

3.1 Model verification 
Figure 2(a) shows the experimental setup for EMA on the pentagonal plate. The traditional modal 

testing by roving impact hammer and fixed the acceleration on the suspended plate in free boundary is 
conducted. Figure 2(b) shows the grid points on the pentagonal plate.  

Table 1 shows natural frequencies of C6 pentagonal plate obtained from FEA and EMA, and Fig-
ures 3(a) and 3(b), respectively, show corresponding mode shapes. The discussions are as follows: 

• Both FEA and EMA results reveal good agreement in term of corresponding mode shape physi-
cal meanings. 

• Natural frequencies obtained from EMA are generally smaller than those from FEA is the cause 
of accelerometer mass effect. 

• Although the pentagonal plate is not really a rectangle, the physical meaning of mode shape can 
be interpreted as (x,y)=(m,n). It is reasonable that there is no (1,1), (2,1) and (1,2) modes for 
free boundary plate. 

• The design striking location as indicated in Figure 3 is at the middle of horizontal direction. The 
even mode in x-direction will not be excited. The excited modes are remarked in Figure 3. 

• From Table 1, mode number in FEA is started from F-07 because there are six rigid body 
modes that are not presented. F-08 and F-10 are the target modes that will produce two harmon-
ics sound.  

Figure 4(a) and 4(b) show frequency response functions (FRFs) for (i,j)=(1,1) and (i,j)=(1,23), re-
spectively, where i is the accelerometer location, and j is the impact hammer applied location. Discus-
sions are as follows: 

• FRFs obtained from FEA and EMA show very good agreement. The simulation model can well 
predict the plate modal response and frequency response.  

• For FRF at (i,j)=(1,1), all of vibration modes can be excited because of the accelerometer being 
fixed at i=1 where is not a nodal point. Mode shapes are depicted at the top of peaks in FRFs.  

• For FRF at (i,j)=(1,23), where j=23 is the prescribed striking location, modes F-08 and F-10, 
which are desired modal response, have relatively higher peaks as well as mode F-14. This indi-
cates the effective design for two harmonics response. 

      
(a) Instrument setup     (b) Measurement grid points  

Figure 2: Experimental setup for EMA on the pentagonal plate. 
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Table 1: Comparison of natural frequencies from FEA and EMA for C6 pentagonal plate  

FEA EMA Natural 
Frequency 

Error 
(%) 

Modal 
Damping 

Ratio 
(%) 

Physical 
Meaning of 

Mode Shapes Mode 
Natural  

Frequency 
(Hz) 

Mode 
Natural 

Frequency 
(Hz) 

F-07    742.79 E-01    724.54 2.52 0.0597 (x,y)=(1,3) 
F-08 1049.2 E-02 1029.8 1.88 0.1278 (x,y)=(3,1) 
F-09 1329.1 E-03 1300.1 2.23 0.3823 (x,y)=(2,2) 
F-10 2088.7 E-04 2029.8 2.90 0.7746 (x,y)=(1,4) 
F-11 2624.9 E-05 2566.0 2.30 0.5977 (x,y)=(4,1) 
F-12 3159.7 E-06 3096.6 2.04 0.7997 (x,y)=(2,3) 
F-13 3601.1 E-07 3468.5 3.82 1.2570 (x,y)=(3,4) 
F-14 4532.7 E-09 4408.7 2.81 0.1081 (x,y)=(5,3) 
F-15 4577.8 E-08 4400.4 4.03 1.2157 (x,y)=(2,4) 

 

   
(a) FEA           (b) EMA 

Figure 3: Natural frequencies and corresponding mode shapes of pentagonal plate for C6. 

 
(a) Hij(f), (i=1,j=1) 

 
(b) Hij(f), (i=1,j=23) 

Figure 4: Frequency response functions, with natural frequencies and mode shapes for C6 pentagonal plate. 
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3.2 Percussion sound of pentagonal plate for C6 
Since the plate is designed to suspend with three thin strings to tie the plate through the small holes. 

The percussion sound test is on the string-tie boundary condition. The impact sound is measured for the 
mallet striking at the prescribed location. Figure 5 shows the percussion sound response for C6 pentag-
onal plate discussed as follows: 

• Figure 5(a) reveals the time waveform of percussion sound and spectrogram. The typical decay 
signal is analysed for its decay rate σ=0.30 as shown in Figure 5(c). 

• From Figure 5(b), there are three peaks in the sound spectrum, i.e. 1049Hz, 2060Hz and 
3721Hz. Their corresponding mode shapes are depicted on the top of each peak. The first two 
peak frequencies are the designed target frequencies as expected.  

• From the spectrogram, the first harmonic frequency last longer through the time history. 
 

      
(a) Time wave form and spectrogram (b) Sound spectrum      (c) Decay rate analysis 

Figure 5: Percussion sound response for C6 pentagonal plate. 

 
(a) Individual plate for each musical note 

 
(b) The percussion instrument set 

Figure 6: The set of pentagonal plates as percussion instrument. 
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4. Design of percussion instrument with pentagonal plates 
The pentagonal plate for C6 has been shown design verification in previous section. From sound 

spectrum frequency domain response as well as modal parameters comparison from FEA and EMA, 
the design of pentagonal plate can be validated. In order to design a set of percussion instrument, we 
choose two octaves of musical notes from F5 to F7 because the note range is suitable for playing varie-
ty of songs. Table 2 lists the standard frequencies of musical notes. In particular, the first harmonic is 
the fundamental frequency, and the second harmonic is the overtone frequency. 

Different fundamental frequencies of pentagonal plates can be obtained by scaling the size of the 
plate by using FEA to predict the desired target frequencies for different musical notes. The rule of 
thumb in tuning different sizes of plates is the square root of length ratio being the inverse of frequency 
ratio between musical notes. Therefore, different pentagonal plates for all of the musical notes can be 
design and manufacture.  

Figure 6(a) shows the 25 pieces of pentagonal plates from F5 to F7. The lower frequency for the 
musical note, the larger the plate size is. Figure 6(b) shows the outfit of the complete set of percussion 
instrument. From Table 2, those notes from F6 to F7 reveals frequency errors smaller than -0.34%, i.e. 
the sound frequencies are not fulfilled for musical tone. This may be due to the manufacturing error and 
need to tune for correct frequency response. Nevertheless, the design of pentagonal plate for percussion 
instrument is basically successful.  

Table 2: Comparison of target and measured frequencies for percussion instrument of pentagonal plates 

Target Frequency (Hz) Measured Frequency (Hz) Frequency Error (%) 

Musical 
Notes 

1st  
Harmonic 

2nd 
Harmonic 

1st  
Harmonic 

2nd  
Harmonic 

1st  
Harmonic 

2nd  

Harmonic 

F5   698 1397   696 1375 -0.29 -1.57 
F#5/Gb5   740 1480   742 1455   0.27 -1.69 

G5   784 1568   783 1542 -0.13 -1.66 
G#5/Ab5   831 1661   834 1635   0.41 -1.58 

A5   880 1760   882 1733   0.23 -1.53 
A#5/Bb5   932 1865   935 1835   0.29 -1.59 

B5   988 1976   991 1943   0.33 -1.65 
C6 1047 2093 1049 2058   0.24 -1.67 

C#6/Db6 1109 2217 1108 2179 -0.07 -1.73 
D6 1175 2349 1176 2306   0.11 -1.84 

D#6/Eb6 1245 2489 1245 2442   0.04 -1.89 
E6 1319 2637 1318 2586 -0.04 -1.93 
F6 1397 2794 1389 2729 -0.57 -2.32 

F#6/Gb6 1480 2960 1472 2892 -0.54 -2.30 
G6 1568 3136 1556 3058 -0.76 -2.49 

G#6/Ab6 1661 3322 1646 3237 -0.92 -2.57 
A6 1760 3520 1747 3432 -0.74 -2.50 

A#6/Bb6 1865 3729 1850 3636 -0.79 -2.50 
B6 1976 3951 1962 3855 -0.68 -2.43 
C7 2093 4186 2077 4081 -0.76 -2.51 

C#7/Db7 2217 4435 2200 4320 -0.79 -2.59 
D7 2349 4699 2325 4566 -1.03 -2.82 

D#7/Eb7 2489 4978 2461 4831 -1.13 -2.95 
E7 2637 5274 2604 5112 -1.25 -3.07 
F7 2794 5588 2774 5431 -0.71 -2.80 
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5. Conclusions  
This work aims to redesign the pentagonal plate dimension such that the fundamental frequency, i.e. 

the first sound radiated mode, can fulfil the musical notes exactly for being the percussion instrument. 
The second sound radiated mode referred to the overtone frequency of percussion sound is optimally 
controlled by dimension optimum design. The overtone frequency can have twice of the fundamental 
frequency. This kind of percussion sound can be said as harmonic sound. In design analysis, the finite 
element model of pentagonal plate is built to perform theoretical modal analysis and obtain the design 
for the pentagonal with two harmonics sound. Design verification is also carried out by comparing 
modal and frequency response with experiments. Finally, the complete set of percussion instrument 
consisting of 25 different sizes of plates are designed and manufactured. The design and manufacture 
processes are detailed and applicable to percussion instrument development. 
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