
 
 

 

 
  1 

APPLICATION OF SINUSOIDAL CURVES TO SHAPE DE-
SIGN OF CHORD SOUND PLATE AND EXPERIMENTAL 
VERIFICATION  
Bor-Tsuen Wang, Yong-Shiang Hsu, Shao-Wei Cheng, Chian-Hong Chen, Chia-
Hsien Huang, and Ying-Hui Wu  
Department of Mechanical Engineering, National Pingtung University of Science and Technology, 
Pingtung, 91201, Taiwan 
e-mail:wangbt@mail.npust.edu.tw 

This work reviews the design concept of chord sound plate (CSP) that is a uniform thickness 
plate with special curved shape designed by Bezier curve (B-curve) method. The CSP can generate 
the percussion sound with three tone frequencies that consist of the musical note frequencies of tri-
ad chord. This work proposes the new design concept by adopting dual sine-wave curve (S-curve) 
to obtain the optimum shape of CSP that can still generate triad chord sound properly. The shape 
design method from B-curve to S-curve for the CSP is first introduced. The optimization problem in 
designing the S-curve CSP is then formulated and shown for the optimal solution procedure involv-
ing structural modal analysis. The S-curve design CSP is manufactured and performed experimental 
modal analysis (EMA) to obtain the plate’s natural frequencies and mode shapes so as to validate 
the design of CSP. Results show the percussion sound response of CSP with one strike on the plate 
can generate the triad sound by examining the sound spectrum. The S-curve design method is 
shown feasible to obtain the proper design of CSP and advantage over the B-curve method. The 
design methodology of CSP can be extended to other triad chords, and the chord sound plates are 
potential for the commercial percussion instrument.  

 Keywords: chord sound plate (CSP), shape optimization, modal analysis, percussion instru-
ment, sound spectrum. 

 

1. Introduction 
Percussion instrument is one type of musical instrument that is mainly due to structural vibration 

modes; therefore, theoretical modal analysis (TMA) and experimental modal analysis (EMA) are 
frequently adopted to study and design the percussion instruments. Bretos et al. [1] use finite ele-
ment analysis (FEA) to determine vibration modes of wooden bars used in musical instrument and 
measured the structural natural frequencies. Petrolito and Legge [2] developed optimization method 
to tune the percussive beam by varying special undercut shape. The numerical model on the beam 
structure is analysed to obtain the modes of vibration. McLachlan [3] also adopted FEA for the de-
sign of musical bells and performed EMA on the bell to validate the structural vibration modes. 
Ansari [4] also used the FEA and EMA to calibrate bell model to predict the fundamental frequency 
and those overtone frequencies. 

Since the structural vibration modes dominate the effect of percussion sound, the geometry study 
and design for percussion instrument are of interest. Jing [5] presented the study on ancient Chinese 
bell for both sound and vibration characteristics. The geometry effect was shown to identify the 
tone frequency of bell as well as the small decay effect due to flat shape cross section. Wang and 
Chang [6] showed a steel chime study similar to the ancient Chinese chime with L shape plate. 
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They indicated that sound effect of steel chime is harmonics, i.e. the overtone frequencies and the 
fundamental frequency with integer ratios. Wang and Tsai [7] discussed the percussion sound of flat 
gong and found that different percussion locations from the centre of gong to the edge will result in 
different sound effects due to the structural vibration mode shapes. The percussion location and 
structural mode shapes are correlated and the key issues for percussion instrument design. Boullosa 
[8] adopted EMA technique and measured the sound spectrum for different sound board material of 
classical guitars. The sound board materials will also affect the play sound response. 

To produce the chord sound for percussion instruments such as xylophone or metalophone, the 
player has to use three sticks to strike simultaneously on the related musical notes in order to play 
the triad sound. Wang et al. [9] have the design of chord sound plate (CSP) that can produce the 
triad sound with one strike on the CSP. The CSP design is carried out the shape optimization by 
Bezier curve (B-curve) that is not easy for redesign of the shape for different musical notes. How to 
perform the optimal design of geometry shape of CSP effectively and efficiently is a challenge. This 
work proposes the new design strategy by adopting the dual sine-wave curve (S-curve) instead of 
Bezier curve (B-curve). 

Wang and Hsieh [10] presented two types of metal bars that can generate the chord sound, and 
the patent was filed [9]. The B-curve method is adopted for geometry optimization. Wang and Jian 
[11] showed the design verification of one type of Metallophone with chord sound by using finite 
element analysis (FEA) and experimental modal analysis (EMA) techniques to obtain theoretical 
and experimental modal parameters, respectively. Results showed that the numerical FE model can 
be equivalent to the practical chord sound plate (CSP). Modal analysis on the plate vibration modes 
is working well in predicting the percussion sound for the design of CSP. Although the B-curve 
method is working well on the design of CSP, the design variables are not patterned and so forth the 
optimization process is difficult to trace. 

Wang et al. [12] proposed the new method by using multiple sine waves to formulate the geome-
try shapes of sound plate, in particular for harmonic sound plate (HSP). In this work, we adopt dual 
sine-wave to mimic the original design of CSP [9]. The optimum parameters for designing CSP can 
be physically interpreted from the dual-sine wave variables. The purposes of the study are as fol-
lows: 
(1) Design analysis for CSP: the geometry shape design of CSP is carried out by dual-sine wave 

curve (S-curve) method instead of Bezier curve (B-curve) method.  
(2) Model verification of CSP: the new designed shape of CSP is fabricated and performed EMA 

to obtain modal parameters to validate the design model.  
(3) Percussion sound of CSP: other than to correlate the sound effect related to vibration modes 

of one CSP, we show four types of triad CSPs, i.e. C major, C minor, C diminished and C 
augmented, to examine the sound spectrum. 

2. Optimum design of chord sound plate 
This section will briefly review the B-curve method for CSP, and then the S-curve method will 

be shown. Design parameters between B-curve and S-curve methods are properly transferred base 
on the original shape of CSP [9]. The geometry optimization problem can then be formulated base 
on S-curve method. 

2.1 B-curve method 
Fig. 1(a) shows the design of CSP that is symmetry in y-direction, and Fig. 1(b) shows the con-

ceptual plot for Bezier curve (B-curve) method for the upper half geometry of CSP [9]. Fig. 1(b) 
shows there are n+1 control points ( ip ) that are known and m Bezier points jp . The coordinates are 
designated as follows: 

 ( ), , 0,1,...,i i ip x y i n= = . (1) 
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In designing the CSP, the coordinates of control points shown in Eq. (1) are design variables 
having the number of 2(n+1). From the control point locations, all Bezier points shown in Eq. (2) 
can be determined and formed the smooth curve that is depicted by asterisks in Fig. 1(b) and the 
upper half geometry of CSP as shown in Fig. 1(a) 

    
(a) Geometry of CSP     (b) B-curve for upper half geometry of CSP 

Figure 1: Bezier curve (B-curve) design method for CSP. 

2.2 Transformation from B-curve to S-curve 
The S-curve method proposed by Wang et al. [12] uses the concept similar to Fourier series. The 

dual-cosine wave equation is as follows: 

 

( ) ( ) ( )0 1 2

0 1 1 2 2
1 2

cos 2 cos 2

y x y y x y x

x xy A Aπ φ π φ
λ λ

= + +

   
= + + + +   

   

. (7) 

Fig. 2(a) depicts ( )y x  and those individual curves including 0y  the constant value, and ( )1y x  

and ( )2y x  the two cosine waves, respectively. iA , iλ  and iφ  are the amplitude, wave length and 
phase angle of the i-th cosine wave. With the proper selection of cosine wave variables and the con-
stant 0y , the corresponding curve for the CSP geometry can be obtained. 

For the CSP design by B-curves, those control points are known and can be used to construct the 
Bezier point coordinates that are also known in priori. The objective here is to obtain the S-curve 
that can be constructed by 0y , iA , iλ  and iφ  such that both S-curve and B-curve will be as close as 
possible. The least mean square error method is adopted to formulate the objective function of op-
timization problem as follows: 
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( )y x  and ( )by x  designate for the coordinates of S-curve and B-curve, respectively. pN is the 
number of data points. Fig. 2(b) shows the example for transformation of B-curve to S-curve. 

   
(a) Concept of dual sine-wave curve (S-curve)   (b) the conversion of B-curve to S-curve 

Figure 2: Comparison of CSP shape from the conversion of B-curve to S-curve. 

2.3 Optimization formulation of CSP design by S-curve 
From the previous section, the new design concept for CSP by S-curve has been proposed; this 

section will formulate the optimization problem for the CSP geometry design. To define the optimi-
zation problem, one will detail the followings: 

(1) Design variables: for adopting S-curve, the design variables include those S-curve parame-
ters, the design variable set can be written as follows:  

 { }0 1 1 1 2 2 2, , , , , ,X y A Aλ φ λ φ= . (9) 

(2) Objective function: Here, we want to design the CSP, i.e. the chord sound such as C major 
triad containing C, E and G notes. Let 1objf , 2objf  and 3objf  be the target frequencies for C 
major triad. The initial guess of design variables can result in the first three modal frequen-
cies of the pre-shaped CSP, e.g. 1f , 2f  and 3f . The design goal is to find the design varia-
bles such that the plate natural frequencies will coincide with the standard frequencies of 
musical notes; therefore, the objective function can be formulated base on least root mean 
square error between natural frequencies and musical notes’ frequencies and defined as fol-
lows: 
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Where the r-th mode frequency error can be written as follows: 
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(3) Constraints: The design of CSP should have the exact frequency response or within the ac-
ceptable range of error. Each mode of frequency error is the constraint and written as fol-
lows: 
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 0.34% 0.34%rε− < < . (12) 

With the above formulation for optimization problem of CSP geometry design, the finite element 
model can be constructed by using S-curve method with parametric formulation and performed 
modal analysis to obtain natural frequencies, rf . This is the forward analysis. Then, by using the 
ANSYS software optimization toolbox, the reverse design analysis to determine the optimum set of 
design variables can be preceded with the above formulation. 

3. Design verification of CSP via S-curve method 
Figs. 3(a) and 3(b) shows finite element model and real structure of the new design of CSP for C 

minor via S-curve method. Once the optimum design is complete, the CSP is manufactured by laser 
cut according to the precise geometry shape. Fig. 4(a) shows the experimental setup for experi-
mental modal analysis (EMA) on the CSP, while Fig. 4(b) reveals the 60 grid points on the CSP. 
The Sound and Vibration Measurement (SVM) software in conjunction with data acquisition device 
NI-9234 is applied to capture the hammer force and acceleration response that are processed to ob-
tain the frequency response function (FRF). The accelerometer is fixed at Point 1, while the impact 
hammer is roving over the 60 grid points; therefore, 60 sets of FRFs can be determined and input to 
ME’scopeVES for curve-fitting to obtain structural modal parameters, including natural frequencies, 
mode shapes and modal damping ratios. 

Fig. 5 shows the comparison of FRFs for the C minor CSP. There are three curves in Fig. 5. That 
the “synthesized” FRF agrees with the “experimental” FRF indicates the reasonable post-processing 
of curve fitting; therefore, the obtained experimental modal parameters can be reasonable and relia-
ble. The “FEA” FRF curve can be seen also comparable to the “experimental”, i.e. the simulation 
on the CSP is good and equivalent to the real structure.  

   
(a) finite element model.                           (b) picture 

Figure 3: The CSP for C minor. 

   
(a) Instrumentation                        (b) grid point of CSP 

Figure 4: Experimental setup for EMA on the CSP. 
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(a) (i j)=(1,1)                                      (b) (i,j)=(1,56)  

Figure 5: Hij(f), FRF of the CSP.  

Table 1: Comparison of modal parameters between FEA and EMA. 
EMA FEA 

Frequency 
error  
(%) 

MAC 
Damping 

ratio 
(%) 

Physical 
meaning 
of mode 
shapes 
(X,Y) 

Mode 
No. 

Natural 
frequency 

(Hz) 

Mode 
No. 

Natural 
frequency 

(Hz) 

E-01 1022.1 F-07 1019.9  0.216 0.932 0.136 (1,3) 
E-02 1241.1 F-08 1230.9  0.829 0.894 0.045 (2,2) 
E-03 1463.9 F-09 1626.6 -10.002 0.927 0.991 (2,3) 
E-04 2536.0 F-10 2525.0  0.436 0.685 0.019 (1,4) 
E-05 3048.1 F-11 3057.1 -0.294 0.852 0.403 (3,1) 

-- -- F-12 3427.3 -- -- -- (3,3) 
E-06 4002.1 F-13 4130.5 -3.109 0.898 0.092 (2,4) 

-- -- F-14 4945.0 -- -- -- (2,5) 
E-07 4905.4 F-15 4973.1 -1.361 0.628 0.049 (3,2) 
E-08 6183.2 F-16 6253.2 -1.119 0.784 1.22 (4,3) 
E-09 6605.3 F-17 6702.6 -1.452 0.790 0.490 (3,4) 
E-10 7185.4 F-18 7423.9 -3.213 0.727 0.940 (3,5) 
E-11 7591.2 F-19 7763.6 -2.221 0.799 0.350 (4,5) 
E-12 8216.1 F-20 8434.9 -2.594 0.797 0.259 (3,6) 
E-13 9343.8 F-21 9509.4 -1.741 0.796 0.327 (4,4) 

Table 2: Comparison of modal parameters between FEA and EMA.  

(a) numerical solution by FEA   (b) experimental solution by EMA 

  
Table 1 summarizes the comparison of natural frequencies between FEA and EMA and modal 

damping ratios. The frequency errors are generally smaller than 3%, but only that of the E-03 and 
F-09 modes is about -10% due to the accelerometer mass effect. In Table 1, modal assurance crite-
rion (MAC) values for the comparison of mode shapes between FEA and EMA are also shown. The 
MAC values for those low frequency modes are nearly above 0.9 indicating the match of physical 
meaning of mode shapes. Table 2(a) and 2(b) show the modes shapes obtained from FEA and EMA, 
respectively. Although the CSP is bottle-neck type of shape, the mode shapes of CSP can still be 
categorized as (X,Y) modes such as a rectangle plate. The physical meaning of mode shapes are 
noted in Table 1, and Table 2(a) and 2(b) reveal those mode shapes in (X,Y) sequence. One can 
observe the very good agreement between FEA and EMA. In summary, based on the good agree-
ment between theoretical and experimental modal parameters, the numerical model of CSP can be 
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well calibrated and applied to other types of CSP design. It is also noted that natural frequencies of 
the first three modes are just corresponding to the standard frequencies of C minor chord sound.  

Table 3: Definition of triad chords, e.g. C chords. 
Chord name Component intervals Example Chord symbol 
Major triad major third perfect fifth C-E-G C, CM, Cma, Cmaj, C∆  
Minor triad minor third perfect fifth C-Eb-G Cm, Cmi, Cmin 

Augmented triad major third augmented fifth C-E-G# C+, C+, Caug 
Diminished triad minor third diminished fifth C- Eb- Gb Cm(b5), C°, Cdim 

1038Hz
1312Hz

1562Hz
2565Hz

3080Hz
3384Hz

4198Hz
4870Hz

5018Hz
6911Hz

7412Hz
7800Hz

 

1043Hz
1242Hz

1566Hz
2539Hz

3028Hz
3366Hz

4012Hz
4877Hz

4911Hz
6108Hz

6629Hz

7230Hz
7608Hz

8216Hz
9345Hz

 
(a) C major    (b) C minor 

1052Hz
1323Hz

1659Hz
2615Hz

2829Hz
4256Hz

4864Hz
5066Hz

6129Hz
7047Hz

7693Hz
7875Hz

  

1047Hz
1245Hz

1480Hz
2561Hz

3148Hz
3220Hz

3932Hz
4797Hz

5177Hz
6125Hz

6473Hz
7113Hz

7807Hz

9457Hz

9686Hz

 
(c) C augmented   (d) C diminished 

Figure 6: Sound spectrum for four CSPs. 

Table 4: Comparison of peak frequencies of sound spectrum with target frequencies of C chords. 

Mode 
No. 

C Major triad C Minor triad 
Peak  

Frequency 
(Hz) 

Frequency 
ratio 

Target  
Frequency 

(Hz) 

Frequency 
ratio 

Frequency 
Difference 

(%) 

Peak  
Frequency 

(Hz) 

Frequency 
ratio 

Target  
Frequency 

(Hz) 

Frequency 
ratio 

Frequency 
Difference 

(%) 
S-01 1038 1 1046.50 1 -0.812 1043 1 1046.50 1 -0.334 
S-02 1312 1.264 1318.51 1.260 -0.493 1242 1.191 1244.51 1.189 -0.201 
S-03 1562 1.505 1567.98 1.498 -0.381 1566 1.501 1567.98 1.498 -0.126 

Mode 
No. 

C Augmented triad C Diminished triad 
Peak  

Frequency 
(Hz) 

Frequency 
ratio 

Target  
Frequency 

(Hz) 

Frequency 
ratio 

Frequency 
Difference 

(%) 

Peak  
Frequency 

(Hz) 

Frequency 
ratio 

Target  
Frequency 

(Hz) 

Frequency 
ratio 

Frequency 
Difference 

(%) 
S-01 1052 1 1046.50 1 0.525 1047 1 1046.50 1 0.047 
S-02 1323 1.258 1318.51 1.260 0.340 1245 1.189 1244.51 1.189 0.039 
S-03 1659 1.577 1661.22 1.587 -0.133 1480 1.414 1479.98 1.414 0.001 

4. Sound measurement for different CSPs 
This work is to show that the CSP can be designed and manufactured by S-curve. The most im-

portant part is to examine if the percussion sound of the CSP can produce the expected triad chord 
sound response. There are four types of triad chords, i.e. major, minor, augmented and diminished, 
as shown in Table 3 for detail definition and composition of musical notes about C chords. This 
work shows the CSPs for the four triads for C chords. 

Figs. 6(a)-(d) show the sound spectrum of CSPs for C major, C minor, C augmented and C di-
minished triad chords. The first three frequencies measured for the four pieces of CSPs are summa-
rized in Table 4. One can observe that the frequency errors between the peak frequency and target 
frequency are very small and generally less than 1%. The C minor and C diminished chords can 
fulfil the target frequencies for all three target modes within 0.34%, i.e. the design and manufacture 
of CSPs are successful. The fundamental frequencies of C major and C augmented are slightly 
higher than the requirement of 0.34% frequency error; however, the frequency ratios for the three 
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musical notes are quite close to the desired. In summary, this work applies the S-curve method to 
obtain the CSPs design that is basically good for the design goal. The minor difference in frequency 
error may be due to the manufacturing error and can be adjusted as desired accordingly. 

5. Conclusions 
This work reviews the design concept of chord sound plate (CSP). Due to the design difficulty in 

using the Bezier curve (B-curve), this work employs the dual sinusoidal wave curve (S-curve) for 
the design of CSP. Results show the S-curve design method can successfully produce the optimum 
shape of CSP that can generate the chord sound. The designed triad CSP contains three musical 
notes in harmony. According to the optimum design, the CSP is produced and performed EMA to 
verify the physical design of CSP that has the expected modal properties and can generate three 
tone frequencies as the triad sound. The CSPs are made for different triads, including C major, C 
minor, C augmented and C diminished. The percussion sound is measured to validate the design of 
CSPs and revealed reasonable agreement with the prediction and, most importantly, with the musi-
cal note’s standard frequencies. This work shows the S-curve method is promising in geometry de-
sign, in particular the CSP design is presented in this work. 
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