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(ABSTRACT)

This thesis presents a theoretical analysis of active control of sound radiation from
elastic plates with the use of piezoelectric transducers as actuators. A strain-energy
model (SEM), based upon the conservation of strain energy, for a laminate beam with
attached or embedded finite-length spatially distributed induced strain actuators was first
developed to determine the induced strain distribution. The equivalent axial force and
bending moment induced by the embedded or surface bonded actuators were also cal-
culated. The one-dimensional SEM was then extended to a two-dimensional model by
employing the classical laminate plate theory and utilizing Heaviside functions to inte-
grate the actuator influence on the substructure. The mechanics model can determine
the structural coupling effect and predict the structural response as a result of

piezoelectric actuation.

A baflled simply-supported rectangular plate subjected to harmonic disturbances
was considered as the plant. Piezoceramic materials bonded to the surfaces of the plate
or point force shakers were applied as control actuators. Both microphones in the ra-
diated far-field and accelerometers located on the plate were considered as error sensors.

In addition, distributed sensors for pressure and structural motion were modelled. The
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cost function was formulated as the modulus squared of the error signal. Linear quad-
ratic optimal control theory was then applied to minimize the cost function to obtain the
optimal input voltages to the actuators. Both near-field and far-field pressure and in-
tensity responses as well as plate displacement distributions were presented to show the
effectiveness and mechanisms of control for various configurations of the actuators and
sensors. Plate wavenumber analysis was also shown to provide a further insight into
control technique. The results show that piezoelectric actuators perform very well as
control sources, and tha: pressure sensors have many advantages over acceleration sen-

sors while distributed sensors are superior to discrete sensors.

The optimal placement of multiple fixed size piezoelectric actuators in sound radi-
ation control is also presented. A solution strategy is proposed to calculate the applied
voltages to piezoelectric actuators with the use of linear quadratic optimal control the-
ory. The location of piezoelectric actuator is then determined by minimizing an objec-
tive function, which is defined as the sum of the mean square sound pressure measured
by a number of error microphones. The optimal location of piezoelectric actuators for
sound radiation control is found so as to minimize the objective function and shown to
be dependent on the excitation frequency. In particular, the optimal placement of mul-
tiple piezoelectric actuators for on-resonance and off-resonance excitation is presented.
Results show that the optimally placed piezoelectric actuators perform far better in
sound radiation control than arbitrarily selected. This work leads to a design method-
ology for adaptive or intelligent material systems with highly integrated actuators and
sensors. The optimization procedure also leads to a reduction in the number of control

transducers.
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Chapter 1 : Introduction

1.1 Background

Noise control has become an increasingly important issue. Noise, unwanted sound
usually irritating and bothersome, is a by-product of the highly industrialized societies.
There are various kinds of noise sources, for examples jets, automobiles, machines and
so on, which are necessary as part of our present society but they have the disadvantage

of creating annoyance in many applications.

In addition to environmental concerns, noise control is also important for some
special applications. Submarines need to be quiet while operating in order to keep their
position undetected by enemy forces. Cabin noise from the aircraft engines can cause
psychological fatigue to pilots and passengers, due to prolong exposure in a high level
sound environment affecting not only comfort but also job performance. It is becoming
increasingly important to maintain an “acceptable” quiet environment, which will pro-

vide passengers with a comfortable trip and ensure crew a safe performance.
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Noise control is a process to attenuate the unwanted sound to an acceptable level.
Most noises come from vibrating structures, whose motions arise from operating ma-
chines. Since sound transmission can be either air-borne or structure-borne, much effort
has been made to identify the noise source and its paths such that a suitable, effective
control method can be applied. There are two main categories of control methods,
passive and active controls. Passive control is customarily adopted to reduce the noise
transmission by changing the physical properties of the structures, for instance, absorp-
tion materials, damping layers, vibration isolators; however, their effectiveness is limited.
Active control appears to be an effective way to reduce low frequency sound radiation
and transmission without the disadvantages of passive control, such as weight, size, etc.
The two main techniques of active control are (1) to apply active forces directly to vi-
brating structures so as to suppress the structural vibration, which contributes to the
sound radiation, and (2) to employ active sound sources in the radiation field so as to

cancel the radiating sound waves.

Recently, active control of noise and vibration has generated a great deal of interest,
due to not only the control effectiveness but also the development of rapid micro-
processors, low power distributed sensors and actuators, and suitable adaptive control
algorithms. The so-called “smart, adaptive, or intelligent structures”, which are struc-
tural systems with integrated sensors and actuators, have become an exciting new ap-
proach in the field of noise and vibration control. The following sections will discuss
active control systems and detail the definition and application of their components as
well as review the research and development of active control systems. In particular, the
active structural acoustic control (ASAC) approach which is the main objective of this

thesis is discussed.
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1.2 Active Control Systems for Structural Acoustic Control

A basic active control system consists of a plant, sensor, actuator and controller.
Figure 1(a) shows a schematic of the feedback control block diagram. The sensor is used
to detect the system output, so that the measured output signal can be compared to the
desired output. The compared error, the difference between the measured output and
the desired output, is processed through a controller to drive the actuator which can af-
fect the plant response. Therefore, the system output can be controlled as desired.
Figure 1(b) shows a schematic of a feedforward control block diagram. The controller
is optimized in order to minimize the least mean square of the error signal, which is the
difference between the control input and system output measured by the sensor. Hence,
the control actuator can change plant response as desired. The following sections indi-
vidually describe more about the nature and characteristics of each component as well
as a brief literature review of active noise control. Figure 2 shows an overview of active

structural acoustic and vibration control systems.

1.2.1 Plant

The plant or the process whose variables are to be controlled is the central element
of a control system. In structural acoustic control, plants can be structures, such as
beams, plates, shells and cylinders or other enclosures, which can be found in the real
world. There is extensive literature dealing with the active control of sound radiation
from different structures. The following discussion reviews references in ASAC associ-

ated with various structures, including beams, circular plates, rectangular plates, cylin-
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Figure 1. Schematic of feedback and feedforward control block diagrams
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Figure 2. Overview of active structural acoustic and vibration control
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ders and enclosures individually. Saunders, Robertshaw and Rogers (1990) presented
the use of Shape Memory Alloy (SMA) fibers embedded in composite beams to mini-
mize the sound radiation from harmonic beam vibration. They experimentally showed
the feasibility of SMA for structural acoustic control. Burdisso and Fuller (1990) ana-
lytically studied the sound radiation from beam with the use of piezoelectric actuators
by adopting feedforward control theory. Their work demonstrated that the controlled
structure system will possess a new set of eigenvalues and eigenfunctions (mode shapes)

due to the influence of the controller dynamics.

Fuller (1990a) analytically studied the active control of sound radiation from a
clamped elastic circular thin plate by oscillating forces applied directly to the structures.
The main advantage of applying control forces directly to the structure in the form of
vibration inputs is that only a low number of control actuators are needed to suppress
the structural modes coupling to the acoustic field. However, the implementation of
vibrational forces (i.e., magnetic electric shakers) has some drawbacks, such as large
volume and requiring a support structure. Dimitriadis and Fuller (1989) presented a
theoretical study of using a pie-shaped piezoelectric actuators bonded to a circular plate
surface and showed the control ability of piezoelectric actuators in sound radiation from
a baflled thin clamped circular plate. These compact distributed actuators overcome the

disadvantages of point force shakers.

Deffayet and Nelson (1988) proposed an active control technique which uses a
number of discrete monopole “secondary” sound sources to suppress the radiated sound
pressure due to the “primary” source from a baffled simply-supported rectangular plate.
Quadratic optimization theory was used to minimize the total radiated power. Results

showed appreciable reduction in power output can be achieved. However, a number of
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the secondary sources are necessary to match the radiation characteristics of the plate
mode. Wang, Dimitriadis and Fuller (1989, 1990) analytically studied the use of two
small rectangular piezoceramic patches, which are bonded to two sides of the plate sur-
faces symmetrically and driven 180° out-of-phase, as actuators to actively control sound
radiation from a baffled simply-supported rectangular plate in conjunction with the use
of LMS adaptive control approaches. They showed the potential of using piezoelectric
actuators in a two-dimensional structural acoustic control. Meirovitch and Thangjitham
(1990a, 1990b) presented the active control of sound radiation from rectangular plate
with/without coupled fluid loading. They essentially proposed to generate feedback
control forces (point forces) to suppress structural vibration so as to reduce sound radi-
ation in the far-field. With their approach, a high number of actuators are required to
control a relatively large number of modes participating in the sound radiation. The
structural system with such a large number of shakers become “bulky” and impractical.
Compact distributed actuators and adaptive feedforward control approaches which will
be discussed further in Sections 1.2.3 and 1.2.4 respectively can overcome this disad-

vantage.

Lester and Fuller (1987, 1990) and Jones and Fuller (1989) studied the active control
of interior noise inside a flexible cylinder as a simulation of an aircraft fuselage. Lester
and Fuller (1987, 1990) applied multiple monopole control sources (termed “active
acoustic control”, AAC) distributed inside the cylinder to minimize the area-weighted,
mean-square acoustic pressure in the circular plane. Jones and Fuller (1989) applied
multiple vibrational control forces (termed “active vibrational control”, AVC). The sig-
nificant difference between the AAC and AVC is that the AAC requires twice the num-
ber of control sources as the circumferential mode order to be controlled, while the AVC

needs only one point controller per mode regardless of circumferential mode order. This

Chapter 1 : Introduction 7



is due to the difference of control physics between monopole sources and vibrational

forces which will be explained in details in Section 1.2.3.

Bullmore et al. (1987) applied a number of secondary sources located in a rectan-
gular enclosure to minimize the total time averaged acoustic potential energy in a har-
monically excited enclosure. They analytically demonstrated that the optimal locations
of secondary sources for maximum power reduction are to be positioned at the locations
of maximum pressure response of the primary field. The performance and characteristic

of different types of sensors will be discussed further in next section.

1.2.2 Sensors

A sensor is used to detect the system response such that the system output can be
monitored and compared to the desired output in order to generate an error signal. The
error can then be utilized to determine the control signal in order to operate the
actuators and to modify the system response under direction of the control algorithms.
In this way, the system output can then be controlled to within a desirable range; hence,

the system is called “controlled.”

Sensors can be categorized into two groups: (1) discrete and (2) distributed sensors.
Accelerometers and microphones, essentially discrete sensors, are most commonly used
in ASAC. A few previous works have used accelerometer sensors in ASAC, such as
(Meirovitch and Thangjitham, 1990a,1990b). However, microphones are the most pop-
ular sensors used in ASAC, for examples (Lester and Fuller, 1990), (Simpson et al., 1989)
and (Saunders, Robertshaw, and Rogers, 1990). It is noted that since microphones are

to measure the sound pressures in the radiating field while accelerometers measuring the
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vibration response, microphones generally perform superior to accelerometers in ASAC.
This phenomenon was discussed by Fuller and Jones (1987). They concluded that for
ASAC, the use of microphone sensors in the radiating field, which generates error signals
containing the structural acoustic coupling information, is advantageous over the use
of accelerometers on the structure, which only provide the structural response informa-

tion.

Dimitriadis and Fuller (1989) and Wang, Dimitriadis and Fuller (1989, 1990) devel-
oped a formulation for sound radiation control associated with a cost function which is
based on the continuous pressure sensor measurements over a hemisphere in the radi-
ating field. This type of sensor is distributed in nature; however, it is difficult to build
such a pressure sensor. Newly developed distributed sensors, such as piezoceramic,
PVDF (Polyvinylidene fluoride) and optical fibers, which can be bonded or embedded in
the structures, will result in electrical output signals due to the structural response, so
they can also be applied to ASAC. Lee (1990a) presented a theory of laminated
piezoelectric plates for the design of distributed sensors which can sense motions, such
as bending, torsion, shearing, shrinking and stretching of a flexible plate. Lee and Moon
(1990b) demonstrated a theory of distributed sensors with a one-dimensional modal
sensors using PVDF thin film. The sensor was built similar to modal-filtering by prop-
erly shaping the PVDF film to sense each individual mode. Collins et al. (1990) pre-
sented a similar distributed piezoelectric film sensor, but different shape from that of Lee
and Moon (1990b), applicable to space robotics. Optical fibers, another branch of
compact distributed sensors, have also been successfully embedded into composite ma-
terials as strain sensors. Claus et al. (1989) presented a brief review of different sensing
techniques for optical fiber induced by local strain field, and this will not be repeated

here. A practical application of optical fiber strain sensors (Cox, 1990) to beam vi-
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bration control is discussed. Cox designed a digital feedback control system to derive
control signals from a mcdal domain fiber optic sensor, and applied them to piezoelectric
actuators. He experimentally demonstrated the use of a modal domain fiber optic sensor

for vibration control of a flexible cantilever beam.

Much literature was found dealing with the distributed sensors primarily focused on
active vibration control (AVC), but little was found to have been concerned with
ASAC. Recently, Clark and Fuller (1990b) have shown the feasibility of PVDF
piezoelectric films attached to the surface of a plate as error sensors in LMS adaptive
feedforward control approaches to minimize sound radiation to the far-field. They used
two narrow strips of PVDF sensors positioned symmetrically on the plate in order to
observe the odd-odd modes which are the more efficient acoustic radiators. Their work
showed much encouragement for the use of compact near-field distributed sensors in-
stead of far-field error microphones, which may not be practical in many circumstances.
This work indicates that compact distributed near-field sensors will have a substantial

impact in the future development of ASAC.

1.2.3 Actuators

An actuator is a device that can influence the plant response, e.g., the radiating
sound from an active structural acoustic control system. Lueg (1936) first proposed to
cancel the primary sound wave with the use of secondary sound wave 180° out-of-phase
with respect to the primary wave. The sound source (speaker) is applied in the acoustic
radiating field to cancel the sound wave. The sound source is not a “real” actuator,

which can actively drive structures and then influence the structural sound radiation, but
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it acts like an active sound source to cancel the radiated sound in the acoustic field.
Many others have also shown the feasibility of using sound sources for sound cancella-
tion. Lester and Fuller (1987, 1990) and Deffayet and Nelson (1988) made use of either
monopoles or dipoles as the transducers in active control of sound radiation and showed
a favorable noise reduction. However, the application of sound sources to active noise
control has their limitation. A number of secondary sound sources are necessary to
match the radiation characteristic of the plate mode, as demonstrated by Daflayet and

Nelson (1988).

An effective form of actuator to achieve ASAC is to apply vibrational forces directly
to vibrating structures. A small number of point force actuators are sufficient to sup-
press those structural modes which are well coupled to the radiated sound field, and to
achieve an appreciable radiated power reduction. Point force shakers are commonly
used in ASAC, such as raentioned previously (Jones and Fuller, 1989), (Meirovitch and
Thangjitham, 1990a, 1990b) and (Fuller, 1988, 1990a). Those studies showed that
shakers can effectively control the sound radiation; however, shakers have substantial

disadvantages, due to their large volume, large weight and requiring support.

Distributed actuators have increasingly generated a great deal of interest in either
sound or vibration control, because of their light weight and easy implementation.
However, most works were concentrated on AVC, and only a few works were associated
with ASAC. Recently, distributed actuators, such as piezoceramics and shape memory
alloys (SMA), have beer: attached or embedded in structures to actively control struc-
tural vibration and sound radiation. Crawley and de Luis (1987) and Bailey and
Hubbard (1985) introduced piezoceramic materials embedded or bonded to beams as

control sources to suppress beam lateral vibration. Such an arrangement can also be
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applied to ASAC. Dimitriadis, Fuller and Rogers (1991) extended the Crawley and de
Luis’s work to rectangular plates, i.e., two-dimensional structure problems, with
piezoceramic patches ideally bonded to the top and bottom surfaces symmetrically and
activated 180° out-of-phase. They showed that properly configured piezoceramic
patches can effectively excite the plate out-of-plane motion so as to control plate vi-
bration as well as sound radiation. Dimitriadis and Fuller (1989) and Wang, Dimitriadis
and Fuller (1989,1990) presented the theoretical analysis for the use of piezoelectric
actuators on active control of sound radiation from elastic plates. A cost function,
which is the integration of mean square sound pressure over a hemisphere in the radi-
ation field, was constructed based on the LMS adaptive control approach. Linear
quadratic optimal control theory (LQOCT) (Lester and Fuller, 1990) was then employed
to minimize the cost function in order to find the optimal control voltages applied to the
piezoelectric actuators. Effective sound radiation control was shown to be achieved by

appropriately tailoring the location and size of piezoelectric actuators.

Liang, Jia and Roger (1989) showed that a SMA reinforced composite structure can
modify its eigenproperties (termed “active properties tuning,” APT) and induce recovery
forces (termed “active strain energy tuning,” ASET) by activating the SMA fibers. Both
characteristics of SMA, APT and ASET, have been applied to control sound radiation
from composite plates. Analytical results showed that plate transmission loss (TL)
profiles can be shifted due to the change of material properties such that TL is increased
at fundamental frequencies. Saunders, Robertshaw and Rogers (1990) experimentally
demonstrated the use of SMA embedded into a composite beam for ASAC. Two control
methods were used to attenuate sound radiation. First, minimization control, based on
gradient search techniques, was effective in reducing the measured radiated sound pres-

sure to the background noise levels. Second, peak radiation frequency placement con-
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trol, applying a first-order thermal model to drive the system response, allowed tuning

of the beam radiation response. These works showed much potential of using distrib-

uted actuators in ASAC.

1.2.4 Controller

In addition to the above mentioned components in an active control system, an
appropriate controller is needed to perform the system control. Several types of control
algorithms have been successfully implemented for ASAC. However, very little work
has been concerned with experiments. Meirovitch and Thangjitham (1990b) analytically
developed a feedback control algorithm by monitoring the states of the system, namely
the displacement and the velocity fields. Their approach is to suppress the total struc-
tural vibration so as to reduce the sound radiation. However, their approach required
many actuators and sensors in order to achieve sound radiation control. This may not
be practical because the plant physical properties, such as weight and size, will be
changed due to the attachment of a large number of actuators and sensors, and hence
the actual structural response becomes complicated and difficult to predict, thus affect-

ing the optimal gains.

LMS adaptive feedforward control algorithms have been successfully applied to
ASAC with a steady state sinusoidal input, such as (Elliott et al., 1987) and (Fuller et
al., 1989). The algorithm is used to adjust the magnitude and phases of the sinusoidal
inputs to the control actuators so as to minimize the sum of the mean squares pressures
which are measured by a set of error microphone sensors. For a feedback control ap-

proach, only the system output measured directly from the sensor is processed to acti-
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vate actuators in order to influence plant response. On the other hand, in addition to
the measured system output, the feedforward control approach requires a reference input
correlated to the primary (disturbance) source to control signals, as illustrated in Figure
1. Here, “adaptive” means that the actuation signals applied to actuators can be ad-
justed through controller by minimizing the least mean square (LMS) of error signal.
Therefore, the control actuator inputs can be properly adjusted to affect the plate re-
sponse and cancel the primary source input. Figure 3 shows an example of such an ar-
rangement of the LMS adaptive feedforward control (Fuller et al., 1989) designed to
reduce sound transmission through a plate by vibration inputs. Error microphones were
used to measure the sound pressure in the radiating field. The LMS algorithm is then
used to adjust the adaptive filters to drive the control shakers such that the mean square
of error signals can be minimized. This type of control algorithm can effectively adapt

and track the disturbance inputs in the time domain.

1.3 Scope and Objectives

To study sound radiation and control characteristics, this thesis is limited to steady
state single frequency disturbance conditions. However, the results can be easily ex-
tended to broad-band disturbance signals by superposition. The dominant behavior of
most practical structures of interest can be represented by rectangular, uniform, flat
plates. Therefore, a simply-supported rectangular baffled plate was considered as the
plant to study the control mechanism and to demonstrate the use of the newly proposed
compact distributed actuators, i.e., piezoceramic patches bonded to the surfaces of

plates, in ASAC. Both discrete and distributed accelerometers or microphones serve as
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error sensors, and the corresponding cost functions are constructed based on the use of
the feedforward control algorithm. Linear quadratic optimal control theory (LQOCT)
is utilized to minimize a particular cost function corresponding to a specific type of
sensors and to find the cptimal control voltages applied to actuators. The specific ob-

jectives of this thesis are:

1. to develop a mechanics model which will describe the loading function due to

the piezoelectric actuators embedded or attached to plates;

2. to employ the LQOCT to optimize control voltage inputs applied to the

actuators so as to minimize a particular cost function associated with ASAC;

3. to compare the effectiveness of different forms of actuators and sensors in

sound radiation control for feedforward control approaches;

4. to optimize the placement of piezoelectric actuators in sound radiation control

for feedforward control approaches.

Two forms of primary inputs (disturbances) are considered in this thesis. They are
point force and incident plane wave inputs. The main difference between these two
disturbance inputs in terms of spatial transform is that the point force can equally induce
all of the plate wavenumber components, while the incident plane wave will intensify the
low plate wavenumber ccmponents. This can be understood by the analogy between the
temporal and spatial transforms. The temporal transform of the impact force, which
will result in a white noise response (i.e., equally induce all frequency contents), is analog
to the spatial transform of the point force, which can equally induce all of the plate

wavenumber components. Similarly, the temporal transform of an impact force with a
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period of duration, which can intensify the low frequency contents, is analog to the
spatial transform of the incident plane wave, which will intensify the low plate
wavenumber components. More explanation of the difference between the point force

and the incident plane wave disturbance inputs will be discussed in Section 3.5.

1.4 Organization of Thesis

This thesis basically deals with three main topics: (1) the development of mechanics
model, in conjunction with the use of classical laminate plate theory, which describes the
structural coupling effect between actuators and structures and predicts the structural
response due to the piezoelectric actuation; (2) the application of multiple piezoelectric
actuators to the feedforward active control of structural sound radiation from baffled
elastic plates due to a harmonic primary input; (3) the optimal placement of piezoelectric
actuators for feedforward control in ASAC. A brief literature review associated with

each topic is given at the front of each chapter.

Chapter 2 discusses the development of a strain-energy model for a piezoelectric
actuator-beam and -plate systems and shows several examples of its applications. A case
of pure bending for an actuator-beam system is illustrated and verified by a finite ele-
ment approach for both static and dynamic analyses. The cases of pure bending, pure
extension and the combination of both for piezoelectric actuator-plate are also presented

and compared to other models.
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Chapter 3 analytically studies active control of sound radiation under various
disturbance/actuator/sensor configurations. The Chapter first studies the vibration of
plates excited by point forces, uniformly distributed pressures, incident plane waves and
piezoceramic patches. The radiated sound pressure in the near- and far-fields is then
evaluated by Rayleigh Integral. Next, linear quadratic optimal control theory is applied
to obtain the control inputs to the actuators so as to minimize a cost function, which
can be the mean square of acceleration or pressure for discrete sensors and vibration
energy density or radiating power for distributed sensors individually. Several case
studies are presented to show (1) the control effectiveness of point force and piezoelectric
actuators, (2) the potential of using piezoelectric actuators in ASAC, (3) the near-field
pressure and intensity distributions and plate wavenumber analysis under various con-

trol situations, and (4) the use and performance of different forms of cost functions.

Chapter 4 is concerned with the formulation of the optimization problem for the
optimal placement of piezoelectric actuators in ASAC in conjunction with the
feedforward control algorithm. Design variables, objective functions and physical con-
straints are identified respectively. A nonlinear constraint minimization IMSL subrou-
tine, using the successive quadratic programming algorithm and a finite difference
gradient, is then applied to solve for the optima. Optimal placements of multiple
piezoelectric actuators i sound radiation from plates are demonstrated and shown to

achieve efficient control.

Chapter 5 contains the main conclusions of the work and also recommends several

promising related research topics.
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Chapter 2 : Mechanics Model of Piezoelectric

Actuator-Beam and Actuator-Plate Systems

“Intelligent material systems and structures”, i.e., materials integrated with distrib-
uted sensors and actuators, have provoked a great deal of interest in the area of vi-
bration and noise control in recent years. Distributed induced strain actuators, such as
piezoceramic materials, have been widely chosen to achieve active control in both
structural vibration (Crawley and de Luis, 1987; Bailey and Hubbard, 1985; Fanson and
Chen, 1986) and structural acoustics (Dimitriadis and Fuller, 1989, Wang, Dimitriadis

and Fuller, 1989,1990).

To fully understand induced strain actuators, a description of the mechanical cou-
pling between the actuators and the structure is needed, and many researchers have been
concentrating on developing a model for the interaction between actuators and struc-
tures. Fanson and Chen (1986) showed the feasibility of using piezoelectric materials
as actuators and sensors in beam vibration control. They introduced the concept of

piezoelectric active members to replace passive structural elements for the control of
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large space structures (LSS). Crawley and de Luis (1987) developed a static model for
one-dimensional piezoceramic patches bonded to the surface or embedded into the body
of beams. They showed that piezoceramic patches perfectly bonded symmetrically to the
top and bottom surfaces and driven 180° out-of-phase result in two equivalent concen-
trated moments acting at the edges of the actuator patches. Recently, Im and Alturi
(1989) proposed a refined model including the transverse shear and axial forces in addi-
tion to the bending moments induced by actuators. Dimitriadis, Fuller and Rogers
(1991) presented a two-dimensional model for piezoceramic patches ideally bonded to
the top and bottom surfaces of a rectangular plate and subjected to 180° out-of-phase
voltages, and showed that, under the assumption of spherical pure bending, the resultant
moments induced by the piezoceramic patches were along the four edges. Clark, Fuller
and Wicks (1990a) developed the one-dimensional beam and actuator formulation from
the plate model obtained by Dimitriadis, Fuller and Rogers (1991), and experimentally
verified the analytical model for a wide range of excitation frequencies applied to a
simply-supported beam. Those results generally agree with previous one-dimensional

results (Crawley and de Luis, 1987).

Tzou and Tseng (1990) developed a finite element formulation for the application of
distributed actuators to flexible shells and plates and presented two case study examples.
They studied a piezoelectric micro-position device and the distributed vibration identifi-
cation and control. Ha and Chang (1990) also used finite element analysis to simulate
the mechanical and electrical responses of fiber-reinforced laminated composites with the
use of distributed piezoelectric actuators. Wang and Rogers (1991b) applied classical
laminate plate theory (CLPT) for finite-length, spatially-distributed induced strain
actuators embedded or bonded to a plate to determine the equivalent force and moment

induced by actuators. They showed that actuators can induce in-plane forces and line
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moments along the four edges of the actuator applied to the laminate and result in the

coupling of laminate plate extension and bending.

In addition to the use of distributed induced strain actuators in vibration or noise con-
trol, the design of distributed induced strain actuators has been investigated with en-
couraging results. Lee (1987) applied the classical laminate plate theory to the design
of piezoelectric laminate for bending and torsional modal control. His experimental re-
sults showed that PVDF or PVF, (polyvinylidene fluoride) actuators can generate plate
bending and twisting independently or simultaneously, and PVDF is suitable for active
damping control of a flexible structure. Lazarus and Crawley (1989) developed the pin-
force and consistent-plate models for the design of induced strain actuators. Exact sol-
utions can be found only for the unconstrained boundary conditions; however, they also
employed the Ritz assumed mode method to solve for problems with other boundary
conditions. However, although much progress has been made deriving the basic
equations of piezoelectric actuator-structural response, there still remains many areas to

investigate and behavior to be understood.

This chapter addresses the development of a theoretical model to determine the
equivalent force and moment induced by spatially distributed induced strain actuators
attached or embedded in laminate beams and plates either symmetrically or asymmet-
rically. The strain-energy model (SEM) for a laminate actuator-beam was derived first
for a one-dimensional case and then extended to a two-dimensional, laminate actuator-
plate problem. The CLPT for induced strain actuators developed by Wang and Rogers
(1991b) was revised by the use of the strain-energy model for laminate beams described
below. The current approach compares favorably with several other modelling ap-

proaches. The cases of pure bending in the beam and plate were illustrated and com-

Chapter 2 : Mechanics Model of Piezoelectric Actuator-Beam and Actuator-Plate Systems 21



pared to the pin-force model (Lazarus and Crawley, 1989), the spherical pure bending
model (Dimitriadis, Fuller and Rogers, 1991) and a finite element formulation (Robbins
and Reddy, 1990). The cases of pure extension and a two layer laminate were also pre-

sented.

2.1 Theoretical Analysis

2.1.1 Strain-Energy Model for a Laminate Actuator-Beam

Figure 4 shows the arrangement and coordinates of an arbitrary laminate beam with
attached or embedded, finite-length, spatially-distributed actuators. The laminate
actuator-beam with a length, L, and a width, b, has n layers, and contains m embedded
actuators with a length, L,, and a width, b, The purpose here is to determine the
equivalent axial force and bending moment induced by these actuators. The basic as-

sumptions are as follow:
1. utilization of the Euler-Bernoulli beam theory
2. 1ideal bonding between layers and actuators
3. infinite beam with finite-length actuators, i.e. L> > L,

4. linear strain distribution, as illustrated in Figure 5, due to an induced strain

actuator
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5. conservation of strain energy associated with the actuator and the assumed

linear strain distribution of the laminate structure.

First, the £-th actuator, as shown in Figure 5, was considered to determine its in-
duced axial force and bending moment. The free strain of the k-th actuator is:

d31

Ak=_[—ak_ Vi (2.1)

Furthermore, the induced strain of the beam by this actuator was assumed to be a
linear distribution, as shown in Figure 5, and has a magnitude of ¢ = KiA, at the
actuator’s location. Note that K, is the unknown parameter. The distributed strain
equations through the thickness of the beam above and below of the actuator can be

expressed as:

N ;
Ex I
8u=,_b—(—2-—2) (2.2)
2~
+
t
sd=-tb8k—(7b+z) 2.3)
7+zak

Because of the assuraption of a linear strain distribution, the resultant actuator
strain becomes the difference of the free strain of the actuator and the assumed strain.
Therefore, the stress in the k-th actuator can be postulated to be uniform and expressed

as

0g, = Eq (A — e ) = E, (1= KAy (2.4)
The axial force and bending moment drawn by this stress can be found by:
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Py, = 1, B (1 = Kby (2.9)
Mak = zaktakEak(l — K)baAy (2.6)

Next, from the assumed linear strain distribution, the stress distribution can also be
postulated. The induced equivalent bending moment can be obtained by the following

integral through the beam thickness:

MmE = ozb,dz (2.7)

where o is the stress distribution due to the assumed strain. By substituting the strain
Equations (2.2) and (2.3) into Equation (2.7) and integrating Equation (2.7), the equiv-

alent bending moment becomes

Mg = 1 Kb, (2.8)
where
a 3.3
E, 1 Z; —2Z;
Ak=z,b 4 ) -]
i=1 2 ‘u
p<k (2.9)
m+n
E tb Z-—Z-3_
+ n L [4(z,2 2,2_,)+z 311]
1=p7+zak
p>k

Based upon the assumption of an infinite beam, the equivalent bending moment

induced by the single actuator must be equal to the bending moment induced by the
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assumed strain distribution. This statement is valid because of the conservation of strain
energy, which is proportional to the bending moment. By setting Equations (2.6) and

(2.8) equal, Ki can be found as:

K, = _ZE’LIL (2 10)
k= ZaktakE + '11( '

The equivalent axial force and bending moment induced by the &-th actuator can

be found by substituting K into Equations (2.5) and (2.6):

k
Peq = ta,,Eak( Za la E + A, — )baAx (2.11)
TN
A
My = 24ty Eo (———— )b, (2.12)

ZaktakEak + }'k

By superposition, the total equivalent axial force and bending moment induced by

m actuators are

m
P,= ZP;; (2.13)

m
M, = Zqu (2.14)
k=1

Therefore, the resultant force and moment can be considered as external loads to

the laminate beam. In particular, for the application of the induced strain actuators to
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the beam lateral vibration control, the equivalent axial force can be generally negligible.
However, this axial normal force does exist and can generate the vibrational power flow
as shown by Gibbs and Fuller (1990). Im and Alturi (1989) demonstrated that actuators
result in both the bending moment and the axial force simultaneously, except for the

case of pure bending or extension in which the bending moment and axial force exist

independently.

2.1.2 Strain-Energy Model for a Laminate Actuator-Plate

Let us consider a rectangular, laminated plate with multiple, embedded induced
strain actuators, such as piezoceramic patches. Figure 6 shows the arrangement and
coordinates of the actuator-plate model. Under the plane stress state, the stress-strain

relations for a lamina in 12-coordinate reduce to

g Qll Q12 0 &
Gy |=| Qs @ O 1) (2.15)
12 0 0 Qg 12

or in short form
{7} =[Q]{e} (2.16)
Then the stress-strain relations for a lamina in xy-coordinate can be shown as:

§11 512 Qe Ex
{o}=[0e}=| Q12 Q2 Q6 || & (2.17)
g}é §26 566 yxy
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The expressions for Q; and 0, can be easily found (Jones,1975). The total strain can

be shown as the sum of the mechanical and induced actuator strains.

{e} ={e"} + {A}

Under the Kirchhoff's assumption, the mechanical strain vector is given by

(e} = (£} + 2{x}

where the midplane mechanical strains:

(€=

yO
xy J

duy
ox

6 Vo
dy

allo aVO
dy ox

the midplane curvatures:

{x}=

and the actuator strains:
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Note that K, K, and K,,,, the new terms not included in the previous work of Wang
and Rogers (1991b), are defined similarly to K, in Equation (2.10) except that 4, should
be replaced by As,, 4+, and A, respectively, and E; in Equation (2.9) should be replaced

by E,, E, and E,

e 1he Heaviside function, H(z — ), is defined as follows:

Hz—-zy)=1, 222z,

(2.23)
= 0, z < Z(, -
and the generalized location function is defined as:
Rx, p) =1, (x1) < x < ()1 SV < (2
(2.24)

=0, elsewhere

For simple application, it is assumed that each actuator patch has the same
(dp) = (dy)y = =
= R,=R. Let R(x,y) be expressed with the Heaviside

piezoelectric strain coefficient, i.e. (dy)m = d;, and the same location

on the xy-plane, i.e. R ==R,=

function:

R(x,y) = [H(x — x;) — H(x — x;))]LH(y — 1) — Hy — ,)] (2.25)
Also, the derivatives of generalized location function are expressed as:
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DR — 16— ) = & = )IHY — 7)) — HO — 1)) (2.26)

& = LHx = x) = H(x = x) )8y = 1) = 60/ =) @)
o'R =[é 0 0 ) 2.28
9xdy = [6(x — x;) — 6(x — x;)]J[6(y — yy) — 6(y — )] (2.28)
°R _ [o°( é’ Hy-y)—H 2.29
Py x —xp) = 6'(x —x)ILH(y — y1) v =y)] (2.29)
IR _ H H o' 6’ 2.30
oy’ = [H(x — x) = Hx = x))][6'(y — 1) = 6'(y = 3)] (2.30)

The mathematical interpretation of the Heaviside and Delta functions is illustrated
in Figure 7. As [H(x —x;) — H(x — x;)] represents a uniform distribution between
x; and x;, [6(x — x;) — 6(cc — x;)] represents two concentrated sources at x; and x, re-
spectively, and [6'(x — x1) — é’(x — x)] represents two moment sources at x; and x; re-
spectively. Thus the derivatives of generalized location function can be graphically
shown in Table 1. The physical meanings of the derivatives of the generalized location

function will be discussed further.

Equation (2.17) shows the stress-strain relation for the k-th layer lamina. Equation
(2.17) 1s integrated through the thickness of the laminate to obtain the following
Equation (2.31). Also, Equation (2.17) is multiplied by z and integrated through the

thickness of the laminate to obtain the following Equation (2.32).
(N} = [41("} + [B){x} — [E}{d) (2.31)
and
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Heaviside Delta 1st Derivative of
Function Function Delta Function

Figure 7. [lllustration of Heaviside and Delta functions
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Table 1. Physical meaning of the derivatives of the generalized location function

R(x,y)= [H(x- X;)- H(x- x2] [H(Y- ¥1)- H(y- y2)]

\

(L3 A) o)

:TR= [6(x- x,)- 8(x- X} [H(y- ¥.)- H(y- ¥2J)]

7T

%= [H(X- x,)- H(x- X)] [8(y- y,)- 8(y- ¥2)

2
S 1l x)- e XA THOY- Y9 HO- ¥l

%z:‘_,.. [H(x- X,)= H(X- XJ)] [NY- y.)- 8ty- v2)

2
JR
F ay = [G(X- X,)- J(X- x2)] [G(Y' Y1)' 6(y- y2)]

s
pave
FF
L
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{M} = [BY{"} + [D){x} — [F1{d} (2.32)

where
N, w | %
2
{N}=| N, =J. oy, |dz (2.33)
A
Ny 2 Tyy
Mel o ]
{My=| M, =J.2' oy, |zdz (2.39)
A
My i Txy
d; R
{d} = dyR (2.35)
dy6R

The i-th row and j-th column element of matrices [4],[B],[D],[E], and [F] is as fol-

lows:
Ag-=§(§.~,~)k(zk—zk_l) (2:36)
B= Z @ulek ~24-1) (2.37)
Dg=%kz=:](§,-,-)k(zi ~zi_) (233)
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Z(Q,pk(l K Vi if j=1
k=1

m

= ) @1 - KV, if j=2 (2:39)

k=1

Ms

k

1

0=
MS

Fij=

=
]

L
2 .

I Ms h Ms

L
2

@)1~ K, )V i j=3
(@l — K )Vilzer + 24-), if j=1
(Qy)k(l Kky) Vk(ZZ+ + ZZ-), if J =2 (240)

(Qy)k( 1=K Wiz +z0), if j=3

Note that K, Ki, and K,,, , the k-th actuator induced strain constants, are functions of

the material and physical properties of the laminate actuator-plate, and relate the inter-

action of layers and actuators. The equilibrium equations are given as:

3Nx any _ la uo
ox ay —5,2
ONyy, N oN, N _(?&
ox dy - ot

(2.41)
(2.42)
62w0
= ph atz - ‘I(xd’,f) (243)
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where

Pl
= ZT (2.49)

If Equations (2.31) and (2.32) are substituted into the equilibrium equations in
terms of the midplane displacements u, v, and wy, and the symbols u, v and w are used

for brevity, then the equations of motion become

ou 8 u u v 8%y 0%y
[, 5+ 215 2 Agy o+ Ay~ + (A, + 4 + 4
n 16 3xay T 466 o 1672 12 66) <3y 26 o5 ]
(3, 2% 1 3p 2w (p 285 2 Ow_,p Ow, (2.45)
—[B), =5+ 3B —5— + (B, + + By - :
53 16752 oy 12 66 ox0y” 26 P

o
= ph —al + [(E“dn + E12d32 + E16d36) a + (El6d31 + 56d32 + E66d36) a

0*u o*u 8%u &%y 8%y &%y
(46 e + (A1 + Aee) Pxdy + A % + Ags P + 24 2x3y + Ay 5" ]

_15, 2w OW | (Biy+ 2Byg) =1 Ow_,3p Ow_ ,p Ow, (2.46)
16753 12 66) 2 26 ox0y” 22 P
62

= ph ’y) + [(Eieds1 + Eyedzy + Eeedas) 6 + (Eyydy) + Epdyy + E26d36) dy ]
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Fu u S u 3 u
B,,——+3B,, ——+ (B, + 2B, + B
(B P 16 2222y (B, 66) oxdy 26 o

v & v 3y
+ Byg——+ (By, + 2B + 3B +B ]
16 PYE (B, 66) 5 — P 6y 26 6x6y2 22 ay 3

— 002 4D, TP oDy, + 2D )LHD dw_,p v,
n 1673, 12 66 P 26 232y o
(2.47)

0
(x,0) + (Frydyy + Fiadsy + Fiede) ET

_ 3’R
+ (Fyyd3y + Fyadyy + Fiedse) —6_2

'R

+ 2(Fiedsy) + Foedsy + Foedse) 32— Axdy

Equations (2.45)-(2.47) are the equations of motion in terms of the midplane dis-
placement. The last two terms of the right hand side of Equations (2.45) and (2.46) in-
clude the dR/0x and dR/dy which can be recognized as vertical line forces illustrated in
Table 1. The third and fourth terms of the right hand side of Equation (2.47) include
0*R/dx* and 0*R/3y* respectively which can be recognized as line moments along the
edges of actuator patch illustrated in Table 1. Additionally, the fifth term of the right
hand side of Equation (2.47) includes 0*R/0xdy which can be recognized as the concen-
trated forces at the corners of the actuator patch also shown in Table 1. It is noted that

these concentrated forces result in laminate twisting.

To solve the equations of motion, boundary conditions need to be specified. The

general boundary conditions can be categorized as follow (Whitney, 1989):

1. simply supported: N,=Ny=w=M,=0
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2. hinged-free in the normal direction: N,=u,=w=M,=0

3. hinged-free in the tangential direction: u,=N,=w=M,=0

4. clamped: u,=u,=w=M,=0

oM,
os

5. free: Ny=N,=w= +0.,=0

2.2 Examples

2.2.1 Illustration of Actuator-Beam (Pure Bending)

Consider a beam with two actuators attached to the top and bottom of its surface
symmetrically as shown on Figure 8, and activated 180 ° out of phase, i.e. Vi =— V..

The stresses of both actuators can be postulated as

0, =E(—A+e")==E(1-K)] (2.48)
0o, =EA—¢")=E(1-K)J (2.49)

where A = V,du/t,. Therefore, the axial force and bending moment induced by these two

actuators are:

Py=P, +P,=0 (2.50)
M, =M, + M, = 1,E,(1 — K)b,A (2.51)
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Figure 8. [Illustration of actuator-beam (pure bending)
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Note that the sum of the axial forces by these two actuators is zero because the
actuators were arranged symmetrically and activated 180° out-of-phase. As shown in
Figure 8, if the assumed induced strain distributions, ¢, and &;, are linear, then the

equivalent bending moment drawn by these two assumed strain distributions can be de-

rived as:
‘g E,
Meq == Kb, A (2.52)

By setting Equations (2.51) and (2.52) equal, i.e. the conservation of the strain energy

is maintained, K can be found as

__ 6
K= 6+ 7 (2.53)
where
HE,
Y = L.E, (2.54)

Therefore, the induced equivalent bending moment can be determined by substituting

Equation (2.53) into Equations (2.51) or (2.52)

2
4
M, ==

=g be (2.55)

This result agrees with those of the pin-force model (Lazarus and Crawley, 1989)
and the ideal bonding case (Crawley and de Luis, 1987) because, for the case of pure
bending, all of these models have the same assumed linear strain distributions. Table 2
summarizes the results of several cases deduced from the strain-energy and the pin-force

model. Only for cases (1) and (4) do both models conclude the same equivalent bending
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Table 2. Comparison between strain-energy and pin-force models (Lazarus and Crawley, 1989)

case strain-energy pin-force
(1) i I \ came
tp thEp
ure (.| _{'b __ 1 | = bA
bee\dinq( J Mo 6+ ¥ (‘l’: thb)
Moq -:;._,:i:'t.;_:fz:ﬂz%;:.;::i:.::‘ M « ta Ea
(2) pure T
extension Poq 2ty Ep 2t Ep
——t —-—-— —l— = . 1 PA
) Por 6+ V bA 2+ ¥
eq
®) ty E ty E
__tb-b ——D-b bA
....... > 2
6 __tbEb M_=—2Eb p s
Mo Mo Me=26r ) 21 “T2(1+ {)
@p, > e P
oq —J—_Ia oq tn E
e =—D2D same
Py oA
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moment and axial force. For other cases, they are somewhat different. This discrepancy

is caused by the assumption of different types of strain distribution.

2.2.1.1 Static Analysis

A cantilever beam, as shown on the top of Figure 9, is subjected to the actuation
of a pair of piezoelectric patches attached symmetrically at the top and bottom of the
beam and driven 180° out-of-phase. The piezoelectric actuation is equivalent to two
concentrated moments, as indicated in Equation (2.55), with opposite signs acting on the
two edges of the piezoelectric patches. The beam deflection can then be determined by

classical beam theory.

For verification of the strain-energy model (SEM), a finite element code developed
by Robbins and Reddy ( 1990) which utilizes generalized laminated plate theory (GLPT)
was applied to obtain the static deflection of the beam. The GLPT, a generalization of
existing high-order theories, accounts for transverse stresses and layer-wise approxi-
mation of the displacement through the plate thickness. To compare the results, the
relative error of the tip displacement of the cantilever actuator-beam was shown re-
spective to the FEM results obtained by varying the ratio of the modulus to the thick-
ness of the beam and actuators (Figures 9(a) and 9(b), respectively). The results show
that the prediction error is generally less than 10 % between the SEM and FEM. It is
noted that for static analysis, the SEM overestimates the static response for low thick-
ness ratios. However, it will be also shown that the SEM agrees well with the FEM for
dynamic responses, because thickness effects become insignificant in dynamic analysis.
Fgiure 9 also shows the similar results for the SPBM, spherical pure bending model

(Clark, Fuller, and Wicks, 1990a). The prediction error is generally less than 15 9 be-
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tween the SPBM and FEM. However, for low thickness ratios, in contrast to the SEM,
the SPBM underestimates the static response. Section 2.2.2.1 explains this difference,
due to the different assumptions of strain distribution in piezoceramic patches used by

the SEM and SPBM.

2.2.1.2 Dynamic Analysis

To illustrate the utility of the model for dynamic analysis, a simply-supported
actuator-beam harmonicelly excited by piezoelectric actuators in a pure bending manner
as described in the previous case study was considered. The configurations of the beam
are the same as that of Figure 9 except the boundary conditions, which are simply-

supported at both ends. The lateral displacement of the beam can be described as:

w(x) = 2 W, sin L"Ll x (2.56)
where
W - _’: m (2.57)
pbty(w, — )
W, = (mn)z\/%iiia (2.58)
P, = %( cos T4 1, — cos 1% x,) (2.59)
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Figure 9. Relative error of tip displacement
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Here, W, is the modal amplitude, w,, the natural frequency, / the moment of inertia,
and P, is the modal force for piezoelectric actuators which results in concentrated mo-

ments at both edges of the actuators.

For verification of the strain-energy model (SEM), the finite element code developed
by Robbins and Reddy (1990) was applied to solve the modal amplitudes which were
compared to the theoretical results from the SEM. Several numerical examples are
presented. The simply-supported beam made up of steel with a length of 0.4 m and a
thickness of 0.002 m (/t, = 10.49) or 0.0006 m (1,/t, = 3.15) with G-1195 piezoceramic
attached to the top and bottom of the beam, as shown in the top of Figure 9, was con-
sidered. The material properties of the G-1195 piezoceramic patch are shown in Table

3, and the natural frequencies of the two beams are tabulated in Table 4.

Figure 10(a) shows the modal amplitude distributions and the steady-state modal
response for piezoelectric actuators driven at w = 400 rad/sec, a frequency between the
first and second modes, for the case of #/t,= 10.49. The actuators can drive all modes,
especially the first two. It is shown that the FEM predicts higher modal amplitudes than
either the SEM or spherical pure bending models (SPBM) (Clark, Fuller and Wicks,
1990a); however, the modal amplitudes generally agree with one another. The modal

response is exhibited a combination of the first and second modes.

Figure 10(b) shows the case of a driving frequency at w = 700 rad/sec, a frequency
very near the second mode. It is seen that the second mode is more efficiently excited
than other modes. The FEM predicts much higher amplitude for the second mode than
for the others because the driving frequency is closer to the second natural frequency
predicted by FEM than to that predicted by SEM. It should also be noted that the

truncating error from the finite element formulation is unavoidable with the higher
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Table 3. Physical properties of G-1195 piezoceramic patch (Piezo Systems, 1987)

dsy = ds, = 166 x 10-12 (%lt dss =0

kg N
pa=7650 (;;) Ea=6.3x10w (;2—)

t. = 1.905 (mm) v, =0.28
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Table 4. Natural frequencies of simply-supported beam (rad/sec)

t, = 0.002 m t, = 0.0006m
(t/ta = 10.49) (t/t. = 3.15)
mode Theoretical FEM Theoretical FEM

1 182.6 181.1 54.8 54.9
2 730.6 728.1 219.2 220.6
3 1643.8 1649.2 493.2 502.4
4 29224 2968.5 876.7 907.9
5 4566.2 4708.9 1369.9 1399.7
6 6575.4 6849.1 1972.6 2087.8
7 8949.8 9531.2 2684.9 2814.6
8 11689.5 12666.4 3506.9 3755.2
9 14794.6 16451.4 4438.4 4807.5
10 18264.9 20633.8 5479.5 6039.5
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modes. Nevertheless, this truncating error is assumed small if large numbers of elements
are used (40 elements were used here). In terms of steady state modal response, the
FEM approach also shows a 20 9, higher than the two analytical models for the maxi-
mum. This corresponds to the higher prediction of the second modal amplitude from
the FEM than others. However, the trend of the steady state modal response generally

agrees to each other, and the SEM gives higher modal responses than the SPBM.

For low thickness ratios, i.e., #,/t, = 3.15, Figure 11(a) and 11(b) show the modal
amplitude distribution and steady-state modal response for piezoelectric actuators driven
at w = 130 rad/sec between the first and second modes and @ = 210 rad/sec near the
second mode respectively. It can be seen that the results of the SEM generally agree
with those of the FEM; however, the SPBM underestimates the modal amplitudes.

Therefore, the SEM is more favorable than the SPBM when the thickness ratio is low.

2.2.2 Illustration of Actuator-Plate

2.2.2.1 One Isotropic Layer with Two Piezoceramic Patches ( Pure Bending)

Considered a simply-supported, isotropic lamina with two actuator patches
(piezoceramic) bonded tc the top and bottom surfaces of the plate subjected to 180°
out-of-phase voltages, as shown in Figure 12. The material properties for the isotropic

layer are given as:
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Figure 12. One isotropic layer with two piezoceramic patches (pure bending)
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The material properties for the actuator patch are given as:

2(1 + v)

( E, v E,

1—v2  1—v2
— v, E, E
[a]= a—a a

CI=17-7 122
0 0

E

2(1 +v,)

(2.60)

(2.61)

where E,v, E, and v, are engineering constants for the isotropic layer and actuator

patches. The typical physical properties of G-1195 piezoceramic patch was shown in

Table 3. It is noted that the laminate is symmetry.

piezoceramic patches were out-of-phase, i.e. V;

lations result

By=0
B =
Pr=17%

Chapter 2 : Mechanics Model of Piezoelectric Actuator-Beam and Actuator-Plate Systems

If the applied voltages of the

— V, then the following re-

(2.62)

(2.63)

(2.64)
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Ey=0 (2.65)

Fy=QyV(1 — K)(h+1,) (2.66)

It is noted that (k + ¢,) is the distance between the two piezoceramic patches, and

K is defined in Equation (2.53). The equations of motion can be reduced to

A, Ly g By Ty B (2.67)
11 axz 66 ayz 12 66 axay 6[2
o*u &%y *v 8%
(A1 + Aee) xdy + Ags o2 + Ay P = ph o (2.68)
&*w o &*w &*w

D,, =2+ 2(Dy, + D) =%~
11 a.x4, ( 12 66) axzayz

(2.69)
3R

= q(x,0) + [(F1ds5; + Fiads)) Py
X

+ (Fy 3 + Fiodsy) 62_12{]
oy

One can observe that Equations (2.67) and (2.68) are coupled without any actuator
effects, and Equation (2.69) with actuator effects is independent. Both Equations (2.67)
and (2.68) are known as the stretching problem, and Equation (2.69) is known as the
bending problem. These equations of motion show that the two actuator patches only
induce laminate bending, and the equivalent external forces excited by the two actuator
patches are the distributed line moments along the four edges of the actuator patch.
This result is similar to that of the SPBM (Dimitriadis, Fuller and Rogers, 1991). The
bending equation substituted by D, and F; can be written as:

2 2 2
ow d°R |, 9°R ) (2.70)

DViw + ph =C",A +
o oMo P
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where

3
D=—Jif; (2.71)
12(1 — v?)
E,
Co=1(1 = K)h+ 1) T—— (2.72)

a

It is noted that actuators result in the equivalent line moments with a magnitude
of C"sA acting along the edges of actuator. C'', is the induced bending moment coefli-
cient. The corresponding equations derived from the SPBM (Dimitriadis, Fuller and
Rogers, 1991) and the CLPT model (Wang and Rogers, 1991b) are the same except for
the replacement of the induced bending moment coefficient C'’y by G (SPBM) and ',

(CLPT) respectively. C, and C’; are defined as follow

2

I+v, — p 2 . h
= E T T =a+vyp 3 (2) (2.73)
where
2 (LY h+1)
p=—teloy i (2.74)
1-v2 R s a2 '
“2(5) +l+3(5)0
and
E,
Co=1t(h+ 1) TV (2.75)

a

To compare Gy, C'y and C"'y, the characteristic curves of G/C"’y and C'y/C"’, varying

the modulus and thickness ratios of plate and actuator are shown in Figures 13(a) and
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13(b) respectively. As seen in Fig 13(a), if E/E, is very large, C'o/C"'y approaches to
unity, and G,/C”’, approaches to 0.94. This can be explained by determining

Co, C'y and C'’y with the assumption of E > > E,. Therefore, G, C'y and C"’y become

E 1
Co=talh+ 1) T — 3 (2.76)
T1H6(5) +8(50)

E,
Cly=Cy= tylh+ 1) T== (2.77)
a

As observed, both €’y and C'’; converge, and (', is actually not changed. However, C,
has a slightly different form. The main difference among the induced moment coefli-
cients is the last term of Equation (3.76), which is 0.94 for this case study. This corre-

sponds to the result shown in Figure 13(a). If we let A > > 1, then

Co=Clo=C'g=1t,h £a (2.78)
1—v,

The induced moment coefficients are equal. This agrees to what is observed in Figure
13(b). When h/t, increases, both G/C”’y and C'o/C”’y approach to unity. In summary,
either the SEM, CLPT or SPBM converges and agree with each other, if plate thickness
is much greater than actuator thickness while their modulus are fixed. In this situation,
the interaction effect between the plate and actuators is relatively insignificant, and in-
duced moment coeflicients are simply proportional to the plate thickness. If the
modulus ratio of plate and actuator increases while their thickness are fixed, the SPBM
has a slight discrepancy from the SEM and CLPT, as shown in Equations (3.76) and

(3.77). This can be explained that these models have different assumptions of strain
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distribution in piezoceramic patches. The SEM assumes linear; the GLPT uniform; the

SPBM trapezoid.

As shown in previous results for the one-dimensional beam, the SPBM underesti-
mates the dynamic response for low thickness ratios. On the other hand, the CLPT
model generally overestimates the resultant force and moment. The SEM is more fa-
vorable than both the SPBM and the CLPT model for a wide range of modulus and

thickness ratios. Only the characteristic curves of C'’; are shown as follows.

Figure 14(a) shows the induced line moment distribution obtained by varying the
modulus ratio of the plate and the actuator for different thickness ratios of the plate and
the actuator, while the physical properties of the piezoelectric actuators were assumed
to be unchanged, i.e., ¢, and E, remain constant. As the modulus ratio increases, the line
moment generally increases. That is to say, a stiffer plate with the same specified
piezoelectric actuation will result in a higher line moment. However, the line moment
will approach a constant when the modulus ratio is very large. For low modulus ratios,
the line moment is more sensitive when the modulus ratio is increased, especially for
those of low thickness ratios. The typical modulus ratios for steel and aluminum are

3.49 and 1.12 respectively, as shown in the plot.

Figure 14(b) shows the line moment distribution for SEM model obtained by vary-
ing the thickness ratio of the plate and actuator for various modulus ratios. It can be
seen that the line moment increases as the thickness ratio increases; and it appears that
there is a linear relationship between the line moment and the thickness ratio for high
thickness and modulus ratios. The magnitude of the induced equivalent line moment is

strongly relative to the plate thickness.
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Figure 14. [Illustration of C”o by varying thickness and modulus ratios
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2.2.2.2 One Isotropic Layer with Two Piezoceramic Patches ( Pure Extension)

In this case study, a similar plate was considered as that in the previous case study
except that the applied voltages V; = Vo= V. The [4],[ B] and [ D] matrices are un-

changed, and
E;=20;V(1-K) (2.79)

F;=0 (2.80)

v

The equations of motion can be reduced to

2’u Du 3% 0’u oR
A + A + (A, + A h + (E1ds3y + Eppdsn) —— 2.81
11 Py 66 ay (4y2 66) 6 ay =p o (Eyd3 12932) Ox ( )

0’u 8% v _ _a_i
(A3 + Age) 2xdy + A — e’ >+ A 5 ph P +(Q1d31+522d32) (2.82)

D 2w +2(Dy, + Deg) o*w +D 2w + ph o*w
n 7 -
Doxt T xR gyt o

= g(xp,t) (2.83)

One can observe that Equations (2.81) and (2.82) are coupled, and the piezoelectric
effects are included; however, Equation (2.83) is independent without any actuation
terms. Therefore, this example results in pure extension rather than the pure bending
of the previous example. In Equations (2.81) and (2.82), the terms involved dR/dx and
OR/dy which represent the in-plane forces along the edges are the equivalent external

forces induced by the piezoceramic patches.
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2.2.2.3 Two-Layered (0°] - 0°) Laminate with One Piezoceramic Patch

Considered a two-layer, angle-ply laminate with one piezoceramic patch embedded
within the laminate and between the two lamina. The laminated plate is illustrated in

Figure 15. The following relations can be found

1j = [(Qij)l Qu) ] (2.84)
Ry =

B;= e [(Qij)l - (Q1j)2] (2.85)
By o

Dy= LYy L@y + (@), ] (2.86)

E;=QjV(1-K) (2.87)

Fy=0 (2.88)

It is noted that actuator bending-twisting stiffnesses, Fy, are zero. That is to say,
there is no bending and twisting induced by the piezoceramic patch; however, bending
and extension are coupled due to the non-symmetric, angle-ply laminate. This coupling

can be seen from the following equations of motion.

(4, L0 LUy g DU 1Ty Ay + Agg) L 4 g L]
11 axz 16 axay 66 ay 16 a 12 66 dx a 26 6y2
P Fw P 5 Pw :
—[By;—=—+ 3B,y —— + (B, + 2B, + —1] 2.89
[Bi P 1672 5 (Br2 66) 2xdy” 26 P )
&u

R
= ph o + (Ends) + Eyady) o
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Figure 15. Two-layered (6°/ - 8°) laminate with one piezoceramic patch
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&u 8u 02u 8%y 8%y 8%y
Aeg——+ (A, + A + A + A4 + 24 + A
[ 16 axz ( 12 66) axay 26 ay; 66 axz 26 axay 22 ay2]
Fw >’w 3w Pw
—[Bis =+ (Bia+2Bgs) —5—+ 3By 5+ Bpn—7] (2.90)
ox’ Ox Gy Oxdy dy
3 dR
= ph _6t: + (Endy, + Eydy,) Fr
_Bu_ 2’u 3’u
[B <X 138 —+ (B, + 2B + B
1 6x 16 2228 oy 12 66) axay2 26 8y3
v &y v v
+ B + (B, + 2B, +3B——+ B
16 PR + (B, 66) 53— ax éy %7 o 2 22 6y3 — ]
(2.91)
g 64w 3w o*w

*w
—[Dy, =5 +4D + 2Dy, + 2Dgg) =52~ + 4Dy —2— 4 D,, 1]
" oaxt 6 axay 12T T ax%a)? % axayt 2 ot

)] |

All three equations, Equations (2.89)-(2.91), are coupled. The actuator patch re-

sults in two equivalent external forces which are the last terms of Equation (2.89) and

(2.90) respectively. To calculate the responses, Equations (2.89)-(2.91) must be solved

simultaneously.

2.3 Summary

1.

This chapter presents a strain-energy model for a laminate actuator-beam which is

essentially based upcn the conservation of strain energy. The induced strain con-
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stant which relates the induced strain to the free strain of the piezoelectric actuator
was derived. Therefore, the equivalent induced force and moment of the actuators

can be determined.

2. The strain-energy model for a laminate actuator-beam was then extended to a two-
dimensional problem, i.e., a laminate actuator-plate, with the utilization of classical
laminate plate theory and Heaviside functions to represent the size and location of

the spatially distributed actuator patches.

3. A case study example of pure bending for an actuator-beam including both static
and dynamic analyses was presented, and a comparison among several models was
made. This work agrees favorably with those of the pin-force model (Lazarus and
Crawley, 1989), the spherical pure bending model (Clark, Fuller and Wicks, 1990a)
and the finite element model developed by Robbins and Reddy (1990). In particular,
the present model, SEM, is more suitable than SPBM over a wide range of thickness

and modulus ratios of beam and actuator in comparison to the FEM results.

4. A case study example of pure bending for an actuator-plate was presented. The in-
duced bending moment coefficients derived from the SEM, C’’,, was compared to
G from the SPBM and ', from the GLPT. The discrepancy is due to the different
assumption of strain distribution in piezoceramic patches. According to the one-
dimensional results, the SEM for two-dimensional plate should be more favorable

than the CLPT and SPBM.

5. Case study examples of pure extension and a general problem with the coupling of

bending and extension for a laminate actuator-plate were also presented.
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6. The proposed model is capable of predicting the equivalent axial force and bending
moment induced by multiple spatially distributed actuators attached or embedded
in laminate beams or plates, and provides a general approach of considerable utility

for the use of induced strain actuators in active noise and vibration control.
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Chapter 3 : Active Control of Sound Radiation

In recent years, the problem of actively controlling sound and vibration has gener-
ated strong interest both in industry and in the engineering research community. Ad-
vances in control theory combined with recent developments in fast computing have
made possible the treatment of problems on active structural sound and vibration con-
trol that were infeasible only a few years ago. However, it is becoming increasingly clear
that the development of corresponding control transducers has generally been lagging

behind. Thus, in response to this need, a strong interest has also arisen in new concepts

for control actuators and sensors. This chapter concerns the use of the proposed
piezoelectric actuator (discussed in Chapter 2) which consists of layers of piezoelectric

material bonded to the surface of the elastic structure to provide control inputs.

It has been suggested that a structurally radiated sound can be best suppressed by
directly applying active forces to the structure so as to affect the sound radiating vi-
brations (Fuller, 1988). It was seen in the analysis (Fuller, 1988) as well as in companion
experiments (Fuller et al., 1989) that point force actuators (i.e. electromagnetic shakers),

while providing excellent sound reduction, have some disadvantages, such as their

Chapter 3 : Active Control of Scund Radiation 66



weight/volume and their need for a support structure. Such drawbacks, inherent to
point actuators, can be remedied by distributed actuators which are more compact in
nature. A type of compac: actuator has been developed for the control of beam vibration
by Crawley and de Luis (1987). Their actuator (as discussed in the previous Chapter)
consisted of thin strips of piezoelectric material which were bonded to the beam surface
and activated to vibrate parallel to the beam surface by an oscillating electric voltage,

applied across the piezoelectric electrodes.

Chapter 2 has presented a strain-energy model for a laminate beam or plate with
embedded or attached spatially distributed piezoelectric actuators. It was further pro-
posed that the piezoelectric strain can be employed to affect the plate vibrations and to
suppress the coupled sound radiation. The feasibility of using a single surface mounted
piezoelectric element to actively control sound transmission through a clamped circular
plate was demonstrated by Dimitriadis and Fuller (1989). It was shown that when the
excitation frequency was low, such that the fundamental mode of vibration was domi-
nant, the radiated field could be significantly attenuated by a single actuator. However,
as the frequency of excitation is increased, the modal response and corresponding radi-
ation becomes “richer”, and the single actuator appears to be insufficient. Recent pre-
liminary experiments of Fuller, Hansen and Snyder (1990c) have confirmed these
observations and supported the analytical results of Dimitriadis and Fuller (1989) and
Dimitriadis, Fuller and Rogers (1991). It is apparent that the appropriate tailoring of
the actuators as far as their number, position and size concerned becomes increasingly

important for higher modes.

It is suggested here that multiple independently controlled piezoelectric actuators

should greatly enhance the control effectiveness by further reducing the control spillover.
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This observation is based on the work similar to that of Meirovitch and Norris (1984)
in which it is analytically demonstrated that as many point force actuators as the num-
ber of modes to be controlled are required to globally reduce beam vibration. However,
in the present study of this thesis, we are only interested in controlling those panel modes
which are significant radiators of sound, and this markedly reduces the required number
of actuators. In other words, as demonstrated in (Fuller, 1988), the radiated field can
be highly attenuated in some cases without significantly reducing overall plate

vibrational amplitude with a reduced number of actuators.

This chapter will first examine the dynamic response of a simply-supported rectan-
gular plate subjected to four types of external loads: (1) point force, (2) uniformly dis-
tributed pressure, (3) incident plane acoustic wave and (4) piezoceramic patch. These
external loads will be used to model both primary (disturbance) and secondary (control)
inputs where appropriate. The steady-state sound radiation of the baffle simply-
supported rectangular plate is then studied. Both near-field and far-field sound pressure
expressions are derived from the Rayleigh formula, which couples the structural dynamic
response to sound radiation. When any type of external load is applied as a control
source, linear quadratic optimal control theory (LQOCT), which is a minimization
technique developed by Lester and Fuller (1990), is applied to calculate the optimal
control voltages to be applied to the actuators, so as to minimize a cost function. The
cost functions considered here are based on the use of: (1) distributed pressure sensor,
(2) discrete pressure sensor (microphone), (3) distributed acceleration sensor, and (4)
discrete acceleration sensor (accelerometer). Some special topics associated with struc-
tural acoustics, such as time-averaged intensity, plate wavenumber analysis, transmission
loss (TL) and radiation efficiency(o), are also addressed. Finally, several case studies are

presented to show the active control of sound radiation as follows:
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1. a harmonically excited structural disturbance input (uniformly distributed
pressure) controlled by multiple piezoelectric actuators to show the feasibility

of using compact distributed actuators in ASAC;

2. an incident plane acoustic wave controlled by point force or piezoelectric
actuators to evaluate the performance of the actuators (a transmission prob-

lem);

3. near-field pressure and intensity distribution and plate wavenumber analysis for
a point force disturbance controlled by piezoelectric actuators to further un-
derstand the characteristic and mechanism of LMS adaptive control ap-

proaches in ASAC;

4. a point force disturbance controlled by piezoelectric actuators to compare dif-
ferent forms of cost functions in conjunction with the use of LMS adaptive

control approaches.

3.1 Plate Vibration

Figure 16 shows the arrangement and coordinates of an elastic, simply-supported, rec-
tangular plate with infinite rigid baffle. Ifthe plate is subjected to an external load, then,
under the assumption of harmonic excitation, the displacement of the simply-supported

plate can be written as
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Figure 16. Arrangement and coordinates of the baffled simply-supported plate
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WEND) =D Y Wiy sin topd sin sy (3.1)

m=1ln=1

where the eigenvalues, i.e., the plate wavenumbers, are

3
3

m=1,2, .. (3.2)

n=1,2,.. (3.3)

W = mn=1,2,.. (3.4)

Here, P,, is the modal force which depends on the exact description of the applied ex-
ternal load. In other words, P,, is the modal component of the generalized force de-
scribing disturbance or control inputs. For the present analysis, the plate response is
calculated for light fluid loading, and thus radiation loading effects on plate dynamics

are ignored. Structural damping is also assumed to be negligible.

3.1.1 Point Force

For a point force of amplitude, F, the modal force, P/, is given as follow (Pilkey and

Chang, 1975):
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P,{m = L4i $in K, X, Sin x, )y (3.5)
xtey

where x; and y; are the coordinates of the point force, as shown in Figure 16, and the

superscript f will signify the point force.

3.1.2 Uniformly Distributed Pressure

For a uniformly distributed pressure of amplitude, ¢, located between coordinates
a, az, by and b,, as shown in Figure 16, the modal force can be written as (Pilkey and

Chang, 1975)

4
Pl = mn(iz ( €OS K, @) — €OS K,y@,)( €OS Kby — €OS K,,b,) (3.6)

where the superscript ¢ will hereafter signify the uniformly distributed pressure.

3.1.3 Incident Plane Wave

For an obliquely incident plane wave of amplitude, P, and incident polar and azimuthal

angles, 0; and ¢,, Roussos (1985) derived the modal force Pz, as follows:
Py, =8P, | (3.7)

where I, and I, are functions of 6, and ¢, given in (Roussos, 1985). The superscript p;

denotes the incident plane wave.
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3.1.4 Piezoelectric Excitation

For an actuator consisting of two identical piezoceramic patches bonded symmetrically
on the two opposite plate surfaces and activated 180° out-of-phase, the corresponding
expression of modal force for piezoelectric excitation Pz, can be derived (Dimitriadis,
Fuller and Rogers, 1991) as follow:

4C"A

Py, = — (Kfn + xi)( COS Ky X7 = COS K, X7)( COS Ky — COS Kp)5) (3.8)
mnrn

where x, x2, 1 and y, are the coordinates of the piezoelectric actuator, and the super-
script a will signify the piezoelectric actuator. The parameter C'',A was defined in
Chapter 2; C'y, as shown in Equation (2.72), is a constant of the piezoelectric material
properties and dimensions; A =dyV/t, is the strain induced by an unconstrained
piezoelectric layer of thickness, ¢, when a voltage V is applied along its polarization di-

rection, while dy is the piczoelectric dielectric strain constant.

By superposition, the total plate dynamic response by a number of external loads
can be evaluated by the composite of individual response. For N; primary sources or
N, control sources, the plate displacement can be derived as follows

for primary sources:

N,

s .

wn(é’ ", t) = eiwt
J

N
4
j=1m

D) Wiy sin ki sinreyn (3.9)
=1n=1

for control sources:
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N,

c

(el o0

WG D)= ) DD Wy Sin i sin s (3.10)
Jj=1lm=1n=1

If the primary and control sources act simultaneously, the resultant plate displacement

can be viewed as a superposition of the above given plate displacement for steady-state

harmonic excitation. The total plate displacement can be written as

N, N,
ji=1 Jj=1

where I§,- and /3, are the plate displacement distribution functions for the j-th primary

source and the j-th control source respectively, given by

N [ e] [o o]
B&m= D ) Qb sinrud sin (3.12)
m=1ln=1
A o0 o0 .
A my= D D Qhysin ki sin sy (3.13)
m=1ln=1
where
wh
Oy =—~ (3.14)
J
WC
1
O = —% (3.15)
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in which G; and H; are the amplitudes of the j-th primary and the j-th control sources
respectively. G; and H; can be substituted by F; for point force, g, for uniformly distrib-

uted pressure, (P); for incident plane wave, and (C"',A); for piezoelectric excitation.

3.2 Sound Radiation

3.2.1 Sound Pressure in the Near-Field

The radiated sound pressure is related to the plate vibration. The Rayleigh integral
which relates the plate velocity to the transmitted pressure is shown as follow (Roussos,

1985):

L2 Iw jow Sw(E, ', 1)

—jwr[c jps g 4
s e A L (3.16)

P(R,0,9)=

§'=—L,/2%n'=—Ly[2

where (R, 0, ¢) are the radiation coordinates , and (&, ) and (¢’, ') the plate coordinates

are defined as follow:

’ Lx
5—6——2—
- _i
n=n )

and
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r=Jx=  + -+

Both the plate and radiation field coordinates are illustrated in Figure 16. By the sub-
stitution of Equation (3.1) into Equation (3.16), the radiated sound pressure can be ex-

pressed as follow:

2 o0 oo
— pw . A
px,y,z,0)= ' & z Z Won

J-Lxﬂ J-lyﬁ NI E-P o) 42 )
¢ n'=—L,|2 \/(x - €I)2+(y_”:)2+22

3
1]
>
I

(3.17)

. Ly .. . L,
sin {x (&' +—7)} sin {xn(¢" +—~)}aC’dn’

'=-L,2

3.2.2 Sound Pressure in the Far-Field

The above integral must 'bé evaluated numerically. However, a closed-form solution for
this integral can be obtained in the far-field. Junger and Feit (1986) used the stationary
phase method while Roussos (1985) has used a solution of the Rayleigh’s integral at a
large radial distance to derive a general expression for the far-field sound pressure radi-
ated from a vibrating panel. By superposition, their analysis can be extended to describe
the sound radiation from a panel excited by various primary and control sources. Thus,
for N, primary sources or N, control sources, the sound pressure radiated to a point,

p(R, 0, @), in the far-field can be derived as follow:
for primary sources:

s

N [¢ o) [e o)
‘ﬂ
PR O, G)=K) D > Wiyl (3.18)

j=1lm=1ln=1
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for control sources:

NC o0 00

‘ﬁ
PAR.6,$) =KD > > Wiy, (3.19)

i=lm=1n=1

where the constant K and the quantities I, and I, can be found in Roussos (1985) as

functions of (R, 8, ¢).

When the primary and control sources act simultaneously, the resulting sound pressure
field can be viewed as a superposition of the above given sound pressures for steady-

state harmonic excitation. The total pressure can be conveniently written as

N_\' Nf
Pi=patpe= ) GE+ ) HA (3.20)
j=1 j=1

where B; and 4, are the sound pressure distribution functions for the j-th primary source

and the j-th control source respectively, given by

o0 (”%
B(R6,8)=K). > Ohll, (3.21)
m=1ln=1
AR,0,8)=K ) ) Ol (3:22)
m=1n=1

in which Q5. and Q. are given in Equations (3.14) and (3.15) respectively.
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3.3 Linear Quadratic Optimal Control

The most general cost function can be formed as the integral of the mean squared
sound pressure over a hemisphere of radius R in the far-field. Such a cost function gives
a global sense of sound attenuation (in particular, it is proportional to the total radiated
acoustic power); however, in practical application, it is difficult to measure a distributed
surface pressure. Instead, a finite number of microphones can be used to measure sound
pressures in the radiating field. Similarly, the cost function can also be defined through
a finite number of accelerometers or distributed accelerometers located over the plate.
The objective here is to apply an minimization procedure for a quadratic function de-
veloped by Lester and Fuller (1990) using tensor calculus, and to calculate the input
amplitude of the control source such that a selected cost function can be minimized.

The derivation for each type of cost function is shown individually.

3.3.1 Distributed Pressure Sensor

If a pressure sensor is assumed to be distributed over an hemisphere of radius R in
the radiating far-field, then the cost function can be defined as the integral of the mean

squared sound pressure over the hemisphere as follow:

pr I
1 2 2 2,
¢p=_2[ Ip,l dS=J J Iprl sin 0d8d¢ (3.23)
R s 0 0

and it is proportional to the radiated acoustic power. When the expression of p, from

Equation (3.20) is substituted into Equation (3.23), the cost function is obviously quad-
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ratic and positive definite and possesses a unique minimum. A minimization procedure
(Lester and Fuller, 1990) for the quadratic function was employed to calculate the opti-

mal control parameters.

The total pressure of Equation (3.20) can be expressed in vector form as:

pn=BG+A"H (3.24)
where
_ 5 -
B,
B= (3.25)
By,
- TN x1
[ 4, ]
A,
4= (3.26)
Ay,
- N, x1
G -
G,
G= (3.27)
Gy,
- N, x1
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&y
[

- “N.x1

Then

Ip,|” = HLAL TIH + 2Real{G[BAT1H} + G'LBF T1G"

(3.28)

(3.29)

where * denotes complex conjugate, and T denotes transpose of matrix; hence, the cost

function can be written in matrix form as

®,=H'LA]H +2Real(G'[BAIH} + G'[B1G

where

2m oL
L4, . =I lejZTT] sin 0d0d¢
¢ c 0 o
~ 2r —;'- e
[BA]NxN=I _[ [BA "] sin 0d8d¢
I ¢ 0 0

21 0=
[B], .. =f J *[ BB "] sin 6d6dg
0 0

s s

Since
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(3.32)
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4, A A7 AyA,
——47‘ * * *
(44 ]chN L4, Az"'A”c]uNf
An | A Al Ay A,
- N, x1 | ¢ ¢
a typical element of [4A4'7] is
(o] o0 o0
KrKsZ Z Z ZleernsIklr mns

k=1il=1m

where I, = I,I,, and then for a typical element of [ 4] Nox N,

A,y =I J% Z Z Z Zleerns irImns Sin 0d0d¢)

k=11=1

Similarly, a typical element of [ BA] ¥, xn, 18 as follows:

o0 OO

27 2 = . .
BA"S —I _[ KK Z Z Z ZlerQ;nsllrc‘lrI;ns sin 0d0d¢

li=1lm=1n=1

and a typical element of [ B] N A,
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(3.34)
ANCA;’C
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(3.35)
(3.36)
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~ 2w -;L * ‘_1 n n. n n. :
B, = . KK A?_J Qietr@mnsliirlmns $in 0d0d¢ (3.38)

0 k=1l=1m=1n=1

Since (G’[ B]1G") is a constant, the cost function was then redefined as

®,=®,—G'[BIG (3.39)
If we let
Fl=-G'[B4] (3.40)

then the optimal solution for the cost function can be found as (Lester and Fuller, 1990)

H=[A1 F (3.41)

It is noted that H is the optimized vector which is defined in Equation (3.28).

3.3.2 Discrete Pressure Sensor (Microphone)

If a finite number of microphones located in the radiating field serve as error sensors,

then the cost function can be defined as follow:

Nmike
2
¥,= > 1p(R. 0, 6)] (3.42)

i=1
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If the total pressure is expressed in vector form as Equation (3.24), then the cost func-

tion can be written in matrix form as
¥, =H'LAH + 2Real{G'[BAIH} + G'LB1G
where

Nmika

[4),, =D [A7T]

i=1

N,

mike

[B4], =D [BAT]

i=1

Since
[ 4, ] A4y A4,
A A A7 A4,
——*T * x x
I:AA ]chNc= * [Al A2...ANc:|IXN=
AN'-' ANCA; ANA2
- N, x1 i

a typical element of [44'7] is
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(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

N_x N,
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A A =KK Z Z Z ZQkIern: kirlmns

k=1l=1m=1n=1

and then for a typical element of [ 4] Nox N,

N,

mike

er = ZKr K; Z Z ZQ;IrQ;nslzlrlrcnns

i=1 k=1il=1m=1n=1

Similarly, a typical element of [ B4] x,x n, 15 as follows:

B rs= Kr Ks z Z' Z ZQZIrQ;nsIZIrI;ms

It
—_
=
1
—_
.
I
3
I
—_
>
—_

and a typical element of [ B], , .
B, = i‘;K K Z Z Z Zler mnslklr mns
i=1 k=1l=im=in=1
Since (G'[ B]1G") is a constant, the cost function was then redefined as
¥,=¥,-G'[B1G
If we let
FT=-G'[B4]
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(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)
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then the optimal solution for the cost function can be found as (Lester and Fuller, 1990)

~_=1_

H=[4] F (3.54)

It is noted that H is the optimized vector which is defined in Equation (3.28).

3.3.3 Distributed Acceleration Sensor

As illustration of distributed pressure sensors in Section 3.3.1, a similar distributed
accelerometer can also be assumed to be located over the plate to measure the plate
dynamic response. Although, in practice, it is very difficult to implement, this type of
distributed sensor represents the out-of-plane vibration energy density over the plate.
On the other hand, as disqussed in Chapter 1, distributed strain sensors, such as PVDF
film sensors attached to the plate surface (Clark and Fuller, 1990b), can also be con-
structed to be utilized in ASAC. These types of strain sensors, in contrast to the dis-
tributed acceleration sensor discussed here which is phase independent, will tend to
average out information over the plate with associated phase changes. This subject,
however, is out of the context of the present work. The cost function corresponding to

the distributed acceleration sensor can be defined as follow:

2 brb 2
cpw=_f [, dA=J J [, | dxdy (3.55)
A 0 v0

It is noted that ®, can be viewed as the out-of-plane vibration energy density. When
the expression of w, frorn Equation (3.11) is substituted into Equation (3.55), the cost

function is obviously quadratic and positive definite and possesses a unique minimum.
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A minimization procedurz (Lester and Fuller, 1990) for the quadratic function was em-

ployed to calculate the optimal control parameters.

The total plate displacement of Equation (3.11) can be expressed in vector form

w=B G+4 H (3.56)
where
e
B,
A
- B,
B = (3.57)
K
By
- “N;x 1
F ]
4,
_ | 4
1 = (3.58)
Ay,
- “N,x1
Then

s

2 —_— Y Ax —y — — N —_— o A Ax —k
lw | =HTA AT JH +2Real{G'[B A7 1H}+G'[B BT 1G (3.59)

where * denotes complex conjugate, and T denotes transpose of matrix; hence, the cost

function can be written in matrix form as
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®,=H'LAIH +2Real{G'LBAIH} + G'[B1G

where

Since
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(3.60)

(3.61)

(3.62)

(3.63)
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A
A
[4 A7 1 ot
N, x N, 1402 N, I x N,

Ay,

- “N,x1

(3.64)

N Nx * nonx

AI//I\I 131//1\2 IANC

AT Ayd; A, Ay,
2 Ax A ./\* A ',\*

Ay Ay AyA; Ay AN,

- JchNc

a typical element of [4 A7 Jis

A A o0 o0 [+ o] 001 c. . .
AA =D DTN 06y QeSS sin 68 (3.65)

k=1l=1m=1n=1

where S, = sin k£ sin k.7, and then a typical element of [4],, .

=1ll=1m=1n=1

N Ly L, oo 00 [ (=) ] .
A= J J Z Z Z ZQlcclrQrcnmSIilrS;msdf dn (3.66)
0 0

Similarly, a typical element of [ B4] woxn, 15 as follows:
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B, —J J Z z Z ZleernsSklr Snsd&dln (3.67)

k=1il=1m=1n=1

and a typical element of [B],,, .

By f f Zi ng Of QoS Smnslec (3.68)

Since (G’L B]G") is a constant, the cost function, in order to provide the optimal sol-

ution, can then be redefined as
®,=0,- G LBIG (3.69)
If we let
F'= - G'[B4] (3.70)

then the optimal solution to minimize the cost function can be found as (Lester and

Fuller, 1990)

H=[4] F (3.71)

It is noted that H is the optimized vector which is defined in Equation (3.28). The
minimized value of cost function, therefore, represents the residual vibrational energy

density over the plate after control.
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3.3.4 Discrete Acceleration Sensor (Accelerometer)

If a finite number of accelerometers located on the plate serve as error sensors, then the

cost function can be defined as the sum of the mean square acceleration:

N,

acc

. 2
Y= D i, 5] (3.72)

i=1

Hence, the cost function can be written in matrix form as

¥, = HLAJH +2Real{G [ BAJH} + G'LBIG" (3.73)
where
NOCC — —
[41, .= dra 47T ] (3.74)
=
NGM _— —
(541, 0= 210 477 ] (.79
i=1
NGCC — —
[Bly . n=D[B BT ] (3.76)
i=1
Since
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R
Ay
A
~ W‘T 2 Ax Ax Ax
4 47 1, = [A4;4;...45]
[ ¢ 1xN,
A.
Ay,
- “N.x1
(3.77)
AN A Ax A Nx
AIA;k A4, A4y,
Ax A Ax A Ax

“N,x N,

a typical element of [4 AT Jis

o0

AA =D D i eSS .79
=

k=11l=1m=1n

and then for a typical element of [ 4] Nex

acc

i=1k=1

Z Z ZQzlrQ;msS)ilrS;m: (3 '79)

00
I=1m=1n=1

Similarly, a typical element of [BA],,, ,, is as follows:
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Ncc (oo

BA, = Z i‘ Z i ZQM,QMSM, - (3.80)

e e)
=lk=1l=1m=1n=1

Q

and a typical element of [ B] Nox N,

Nacr o0 o0 o0 o0

- — . .

Brs = Z Z Z ‘ZJQZIerCmsSI’c'IrS{nns (3'81)
i=lk=1ll=1m=1rn=1

Since (G'L B]1G") is a constant, the cost function was then redefined as
¥,=¥,-G'[BIG (3.82)

If we let

F'=-G'[B4] (3.83)
then the optimal solution for the cost function can be found as (Lester and Fuller, 1990)

— ~ =1

H=[4] F (3.84)
It is noted that H is the optimized vector which is defined in Equation (3.28).

In summary, ®, and ®, are measured by ideal sensors, which may not be practical
in reality; however, @, and @, represent the power of sound radiation or energy density
of out-of-plane structural vibration respectively. They can be used as an index of control
effectiveness. For practical application, ¥, and ¥, are the alternative option. A rea-

sonable number and location of sensors shall be selected to estimate the actual system
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distributed response, such that an optimal solution can be found without losing the

general nature of the response.

3.4 Special Topics in Structural Acoustics

3.4.1 Plate Transmission Loss

For an incident acoustic plane wave at angle 8, the incident acoustic power to the

plate of dimension L, and L, is easily shown to be (Roussos, 1985)

PIL.L,cosf,

T (3.85)

II;
where p and ¢ are mass density of air and sound speed in air, and the total radiated

acoustic power from the plate (on the other side) associated with Equation (3.23) can

be shown as

1 N 2

2 l 4

I, = L f I’;’C R? sin 0d0d¢ =2 @, (3.86)
0

Then, the plate transmission loss (TL) through the plate can be defined as follow
I,
TL=10log(—=") (3.87)
I,
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Transmission loss is an evaluation of the inverse of sound transmission efficiency; hence,

the larger the value of TL, the less sound power is transmitted through the panel with

a corresponding improvement in reduction of global sound radiation.

3.4.2 Time-Averaged Intensity

The distribution of vectors associated with the magnitude and direction of intensity

in acoustic fields have been proved useful in studying the flow of energy. The two

microphone technique (Pettersen, 1979), which is based on the finite difference method,

has been widely adopted to measure or calculate the acoustic intensity for its simplicity

(Krishnappa and McDougall, 1989; Kristiansen, 1981). The schematic used for the in-

tensity calculation by the finite difference method is shown in Figure 17 for the z-

direction. From the fundamental relationship between acoustic pressure and velocity

and the finite difference approximation, the averaged acoustic pressure and particle ve-

locity in the z-direction (for example) between points 1 and 2 can be formulated as fol-

lows (Pettersen, 1979):

- (py + )
P~
- (P, — 1)

U, ~—
2 jpowlz,

where

h= |P1 |"’jd’l .
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¢, = tan_l(

Im{p,} )
Re{p,}

(3.88)

(3.89)

(3.90)
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™~ 1
Az,

»~ 2 y
X

PsllP2|

sin (b.- ¢

22 o WAz, (¢1 )

P,= |P1|ej¢'

P.= |p2|ejd)2

Figure 17. Schematic of intensity calculation
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, I
pr=lp, %, ¢, = tan ‘(%) (3.91)

Hence, the time-averaged intensity in the z-direction between the two points can be

shown to be (Pettersen, 1979)

_ |P1| |P2|

2~ 2pohzg, sin(¢; — ¢,) (3.92)

Similarly, the time-averaged intensity distribution for other directions can also be derived
by the replacement of the separated distance Az, and the appropriate variables. The

total intensity is then the vector sum of the intensities in the x,y and z directions.

3.4.3 Plate Wavenumber Analysis

The plate velocity distribution derived from Equation (3.1) can be transformed to

the central origin plate coordinates (¢, n') as
021 o0
Ww(&, ' 1) = jwed™' Z Z Wonn Sin K, (&' + Ly/2) sin k(0" + Ly/[2) (3.93)
ms=1n=1

The wavenumber transform, which is the Fourier integral transform, of plate velocity is

then given by (Fahy, 1985)

% ol —J '+ xyn')
V(K»Ky)=f J W, )T dy
0 *0
(3.94)
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where

KKy,

2 2 2 2
(Km - Kx)(Kn - Ky)

Vin(Kxs K,) = {[ sin*(mn/2) sin’(nn/2) cos(k,Ly/2) cos(x,L,/2)

— cos’(mn/2) cos’(nn[2) sin(i,Ly/2) sin(x,L,/2)]  (3.95)
—jL sinz(mn/2) cosz(mr/2) cos(kxLy/2) sin(k,L,[2)
+ cos’(mn/2) sin*(nn/2) sin(k,L,/2) cos(x,L,/2)]}

Hence, the plate spectral velocity distribution can be obtained from the inverse Fourier

transform

copr e 1 I > —jieyE'+ ey’
W(ﬁ,n)=gj J V(s Ky)e 7 e di, (3.96)

The radiated power has been shown in (Fahy, 1985) to be related to the integration

of the modulus squére of f}(x,, k,) over the wavenumber domain. Therefore, it is of in-
terest to evaluate the wavenumber modulus spectrum of plate velocity, | V(s x,)|°. 1t
is noted that the wavenumber modulus spectrum of modal velocity is a function of
K., K, and is composed of a double infinite sum of modes. Only wavenumber compo-
nents satisfying the condition (k2 + k2) < k2 (i.e., supersonic wavenumbers) contribute to
sound power radiation; other components are associated with reactive near-field radi-
ation loadings (Fahy, 1985). Thus the range of integration is limited to — k < k, < k and

—Kk<K <K
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The sound pressure in the radiated acoustic far-field can also be evaluated from the
wavenumber transform of plate acceleration using the method of stationary phase

(Junger and Feit, 1986) as

pejtcr ~ . wpe]xr -

p(r, g, d)) = 2r w (Kx: Ky) =J 2nr V(va Ky)

) o o (3.97)

pw o
== 27”,— Z Z WanVmn
m=1n=1
where the points of stationary phase are
K, =k sin 0 cos ¢ (3.98)
X

Kk, = Kk §in 0 sin ¢ (3.99)

One can demonstrate that Equation (3.97) is equivalent to Equation (3.20).

3.4.4 Radiation Efficiency

The mechanism of structural sound radiation has been a great deal of interest. For
the appropriate design of sound radiation control, it is necessary to understand struc-
tural radiation characteristics. The radiation efficiency of a vibrating structure quantifies
the degree of acoustic coupling between sound radiation and structural vibration. The
following will show the definition and derivation of the individual mode radiation effi-
ciency and the average radiation efficiency, which is associated with total radiated power

from a series of modes existing simultaneously.
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3.4.4.1 Mode Radiation Efficiency

The plate displacement distribution corresponding to the (m,n) mode can be shown

to be as follow:

W&, 7,0) = €W, sin k,,& sin K, (3.100)
and the plate velocity corresponding to the (m,n) mode is:

Uy (&, 1,0) = jd W, sin k& sin k1 (3.101)

The sound pressure in the far-field from Equation (3.20) can also be expressed as:

p= i i mn (3.102)

where (p,)m. is the sound pressure corresponding to the (m,n) plate flexural mode. The

radiation efliciency of the (m,n) mode is defined as (Wallace, 1972):

I
O = L > (3.103)
pcL L, < | @,,,| >
where
2 @)
2
T, j J ”"" " R? sin 0d6d¢ (3.104)
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Bl iy
= 2 _ 1 Upnn
< |yl >*= LL, J.o J:) 2 dxdy

(3.105)

= —é- 0)2 erm

In Equation (3.104), I1,, is the radiated power due to the (m,n) mode response, and
< | %m!|* >, in Equation (3.105), is the temporal and spatial average of the square of the
(m,n) mode plate velocity. By substituting Equations (3.104) and (3.105) into Equation

(3.103), the radiation efficiency of the (m,n) mode can be expressed as:

8I1,,,

= 3.106)
chxLyoo2 Wm,,2 (

Gmn

It is noted that 0., represents the radiation efficiency of the (m,n) mode and can be
considered as a structural-acoustic property which indicates the acoustic coupling be-
tween mechanical vibration of particular mode and sound radiation. Radiation effi-
ciency is defined as the ratio of the acoustic power radiated from the elastic plate to the

power radiated from a rigid piston of same area vibrating with an amplitude equal to the
time-spatial average of the plate velocity. For illustration, Figure 18 (Wallace, 1972)
shows the modal radiation efficiency for a square plate plotted against the wavenumber
ratio (note that the modal radiation efficiencies for the rectangular plate used in the
numerical examples in Section 3.5.4.1 are shown in Figures 56 and 57). The

wavenumber ratio is defined as:

K

=— 3.107

V=%, (3.107)
where
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Figure 18. The radiation efficiency of the (m,n) mode for a square plate (Wallace, 1972)
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_(Leh (3.108)

When the wavenumber ratio equals to 1 (i.e.,, y = 1), the “critical frequency” can be

defined as follow:

o= 2L (3.109)

For low wavenumber ratios, the odd-odd modes, such as the (1,1), (3,1) and (3,3)
modes which strongly couple the sound radiation and mechanical vibration, have higher
radiation efficiency than the odd-even or even-odd modes ((2,1) or (2,3) modes) and the
even-even mode ((2,2) mode), which are subjected to the radiation cancellation. The
physical reason that even modes generally do not radiate efficiently is due to volumetric
cancellation. At low frequencies, fluid from one cell is “shunted” over to an adjacent cell
of equal area but moving out-of-phase. Radiation comes from energy due to a change
in momentum associated with a change in the direction of fluid motion. For y greater
than 1, i.e., excitation frequency above the critical frequency, the radiation efficiency
approaches asymptotically to unity for all modes. This indicates that each mode has an
equivalent contribution in terms of acoustic coupling. For y > > 1, the acoustic wave-
length becomes shorter than distance between “cell” on the plate, so they do not interact

but radiate independently.

Also, the primary structural wavenumber, k.., can be defined as:
Komn = (K + 13)' (3.110)
If =X— =1, then the “modal critical frequency” for the (m,n) mode can be defined as:

Kmn
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p 14 _
cof,,,,=c2%- Jo (3.111)

Table 5 shows the definition of the associated wavenumbers and frequencies. Figure
19 illustrates the distributions of wavenumbers and their physical interpretation regard-
ing to radiation characteristic of an elastic plate. As shown on the top of Figure 19
(Mathur, Gardner and Burge, 1990), wavenumbers are plotted against frequency. The
thick solid line denotes the acoustic wavenumber, which is linearly related to the
excitation frequency. The thin solid line denotes the free structural wavenumber while
the circle mark denotes the primary structural wavenumber. The critical frequency is
defined in Equation (3.109), when the acoustic wavenumber equals to the free structural
wavenumber. For excitation frequencies above the critical frequency denoted as Region
(3), the corresponding wavenumber distribution in the wavevector domain is shown on
the bottom-right of Figure 19 (Maidanik, 1974). In this region, the resonant modes near
Kk, are included in what are termed “surface modes”, which are the most effective radi-
ators, since they are driven well above y=1. For excitation frequencies below the critical
frequency, two regions can be characterized: Region (1): k¥ < k, < 2!/2; and Region (2):
k, > 2%k, k, is the free structural wavenumber while x is the acoustic wavenumber
corresponding to the excitation frequency. In Region (1), the sound radiation is con-
tributed from the surface modes and the resonant modes, which include both the edge
and corner modes as shown on the left-bottom of Figure 19. In Region (2), the resonant

modes include only both the x- and y-edge modes while there is still some surface modes.

To physically understand the corner, edge and surface mode radiations, Figure 20
depicts the displacement pattern for each type of radiation. The relative phases are in-

dicated by + and —, and the uncanceled areas are shaded. Figure 20(a) shows the cor-
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Table 5. Summary of frequency and wavenumber

exciation frequency o
natural frequency of plate Opp = pDh (k2 + x3)
P
h
critical frequency w. = c%,| pg
p 14
modal critical frequency O = ( %) N Omn
. ()
acoustic wavenumber K=—
w? p,,h 1/4
free structural wavenumber Ky = (—D——)
primary structural wavenumber Kmn = ~/ Kk + K3
mn
structural normal mode wavenumber ¥, = T
X
K = TE
n Ly
structural modal wavenumber K = K sin 0 cos ¢

K, = Kk sin 0 sin ¢
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Figure 19. Illustration of wavenumber distribution (Mathur, Gardner, and Burge, 1990; Maidanik,
1974)
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ner mode radiator for those structural normal mode wavenumbers greater than acoustic
wavenumber (i.e., k, > K, k, > k ). The central region of the plate motion is subjected
to quadrapole or dipole cancellation due to a structural wavelength shorter than the
acoustic wavelength. Thus, only four corner cells acts as four monopole sources eflec-
tively radiating power. Figures 20(b) and (c) show the x-edge (k, < k, k, > k) and y-edge
(km >k, k. < k) mode radiators respectively. There is cancellation in the middle of the
plate and leads to leaving uncanceled strips at both edges radiating power. Figure 20(d)
shows the surface mode radiator (k. < k, k, < k). The cancellation phenomenon breaks
down due to the structural wavelength being much greater than acoustic wavelength,

and thus the entire plate contributes to far-field radiation.

3.4.4.2 Average Radiation Efficiency

Similar to definition of the (m,n) mode radiation efficiency, the average radiation

efficiency can also be defined as (Berry, Guyada, and Nicolas, 1990)

o= I - (3.112)
peL L, < |ul >

where the total power radiated from the plate, I1, is

27 o E 2 4
2
J 'f,,’c' R’ sin 0d0dg =R, (3.113)

and < | %] >? is the temporal and spatial average of the square of the plate velocity.
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(3.114)

<N S,
m=1ln=1

By substituting Equations (3.113) and (3.114) to Equation (3.112), the average radiation

efficiency can be expressed as:

o= 8T _ (3.115)
2 N\ 2
pcL Lo Z ‘L Won

m=1ln=1

The average radiation efficiency indicates the overall acoustic coupling between the total
mechanical vibration and sound radiation for the baffled simply-supported plate sub-
jected to a specific disturbance input. In contrast to Equation (3.106), Equation (3.115)
also includes the summation of the cross product of modal amplitudes (W,,). This cross
product has significant effect on the average radiation efficiency. On the other hand, the
radiation efficiency of the (m,n) mode as shown in Equation (3.106), which only con-
siders the (m,n) mode contribution, is independent of disturbance input and can be

viewed as a structural-acoustic property of the free plate system.

3.5 Analytical Results

As mentioned in Chapter 1, different forms of disturbance inputs have significantly
different radiation characteristics. Point force inputs generally drive situations in Re-

gions (1) and (2), as illustrated in Figure 19, while incident plane wave inputs drive
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modes for Region (3) due to the constant phase and pressure over the plate. Hence,
different types of disturbance inputs will result in different radiation characteristics in

term of the distribution of plate wavenumber components.

To study the plate vibration and sound radiation characteristics, several fundamen-
tal mode shapes of simply-supported rectangular plate and (m,l) mode radiation
directivity are illustrated in Figure 21 for future reference. It is noted, in Figure 21 (b),
that the “+” and “-” indicate the sign of the pressure phase angle. For y > > 1, the (m,1)
mode radiation directivity shows m-1 dips across the xz-plane. For y < < 1, radiation
patterns associated with higher order modes are similar to higher mode radiation
directivities appears as lower mode radiation characteristics. In the following numerical

examples, the latter condition of y < < 1 is presented.

3.5.1 Structural Disturbance Input Controlled by Piezoelectric Actuators

This section is concerned with an analysis of the optimization of the complex volt-
ages needed to be applied to one or more independent piezoelectric actuators so as to
minimize the total radiated sound power from a baffled, simply supported, rectangular
plate. The optimization procedure is shown in Section 3.3.1. The disturbance for the
primary plate excitation is assumed to be a set of one or more non-contacting
electromagnetic exciters. The applied force by such a disturbance source is approxi-
mated by a constant amplitude, single frequency, uniformly distributed pressure over a

small square area on the plate.

A few representative examples are given below to show the effects of number, size,

and location of actuators under different disturbance conditions. All cases considered
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Figure 21. Tllustration of mode shapes of simply-supported rectangular plate and modal radiation
directivity (Clark and Fuller, 1990b)

Chapter 3 : Active Control of Sound Radiation 110



are below coincidence corresponding to the cases in Region (1) as shown in Figure 19.
Table 6 shows the specifications of the steel plate used in the simulations. Natural fre-
quencies are tabulated in Table 7 (Pilkey and Chang, 1978). Note, for the following re-
sults, that no damping was included in the analysis. In order to calculate the plate
response and radiated field, it was necessary to truncate the modal sums in the above
equations. Upon consideration of computing time, %, /, m, and , n were truncated at 5
(i.e., 25 modes were considered), and it was found to provide sufficient convergence of
series in Equations (3.1) and (3.16). In particular, for the cases of low wavenumber
excitation considered here, the plate displacement and the radiated sound pressure am-
plitude have no more than 0.01 % difference in comparison to those results which in-

cluded 100 modes (i.e., m=n=10).

The following results consist of the distribution of plate vibrational amplitude plot-
ted along the y = L,/2 horizontal plate midline. The results are normalized by the largest
amplitude obtained in each case. Radiation directivity patterns are also presented along
the y=L,/2. For convenience, all § angular positions to the left of the origin in the
directivity pattern plots below correspond to ¢ == far-field positions. Similarly, the
right half of each plot corresponds to ¢ =0. In this case, the input disturbance ampli-
tude is fixed at ¢=20N/m?, which gives an input force of 0.32 N located at
a, = 0.06m, @, = 0.1m, b, = 0.06m and b, = 0.1m. The plate is assumed to radiate into the
air; the radiated pressure is plotted in dB re 20 x 10-¢ Pa. In order to show the shape
of the residual radiation directivity, some figures reveal negative dB, which corresponds
to pressure less than the reference level. The total radiated pressure was calculated at a
distance of 1.8 m from the plate central origin using the far-field pressure expression of

Equation (3.20). These variables, as well as radiated acoustic power in dB re 10-2W,
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Table 6. Plate specification

E =207 x 10° (—Ez— ) v=0.292 L, = 0.38 (m)
kg
p, =870 ( S ) h = 1.5875 (mm) L, = 0.30 (m)
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Table 7. Natural frequencies of plate h=1.5875 mm (Hz)

3
—

=

f—

69.62
149.82
283.47
470.60
711.18

N bW -

198.29
278.48
412.14
599.26
839.85

3

412.74
492.93
626.59
813.71
1054.30

4

712.96
793.16
926.82
1113.94
1354.52

5

1098.97
1179.16
1312.82
1499.94
1740.53
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are presented for a range of frequencies and different primary source arrangements in

order to demonstrate the effectiveness of the multiple piezoelectric induced control.

3.5.1.1 Effect of Number of Actuators

Figure 22 presents the vibration amplitude distribution of the plate for differing
number and arrangement of piezoelectric control actuators, when the disturbance
excitation frequency was 68.4 Hz, near the resonant frequency of the (1,1) mode given
in Table 7. At the side of Figure 22 and all the following figures, the plate with pre-
scribed disturbance input and actuator locations and size are drawn to scale looking into
the plate from the radiated field. The black block represents the primary source, while

the blank block depicts the size and location of the piezoelectric actuators.

In Figure 22, the solid line depicts the displacement distribution for the primary field,
and it can be seen to be very close to that of the (1,1) mode as expected, since it is near
its resonant frequency. When the various configuration of control actuators were ap-
plied, the vibration amplitudes were significantly reduced, and the (1,1) mode was well

controlled for all cases.

Figure 23 shows the corresponding radiation directivities to the cases of Figure 22.
As expected, the radiation directivity is uniform corresponding to a monopole source
case, the (1,1) mode dorninates the radiated primary field due to its high structural re-
sponse and radiation efficiency. When one actuator was used, the (1,1) mode is con-
trolled, and the (2,1) mode becomes significant. By applying two actuators as shown in

Figure 23, the (1,1) modes and the (2,1) modes can be controlled simultaneously still
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leaving the (1,1) mode to contribute significantly to the residual radiation field. Further
reduction is observed with the use of three and four actuators, and the residual sound
field appears to be composed of a combination of the (3,1) and (1,1) modes. Addi-
tionally, the total reduction in radiated acoustic power is shown at the bottom of Figure
23 in dB. It is apparent that, for this frequency, as the number of (appropriately posi-
tioned) actuators is increased, the corresponding radiated acoustic power decreases.
However, on resonance one actuator is seen to provide maximum attenuation level that
would be achievable in practice (due to background noise, controller accuracy limitation,

etc.)

Next, Figure 24 and Figure 25 show the vibration amplitude distribution and sound
radiation directivity for different actuator configurations and a disturbance excitation
frequency of 148.8 Hz, near the (2,1) resonant frequency of Table 7. The results of
Figure 24 indicate that the displacement distribution of the disturbance is close to the
(2,1) mode with some (1,1) contribution (as the driving frequency is not right on reso-
nance). When one actuator located in the center of the plate is used, very little control
is achieved, as the actuator in this position cannot couple into the (2,1) mode. In fact,
the displacement distribution becomes more symmetric and lobe indicating that the (1,1)
mode has been controlled. When two actuators are used as shown in the scale diagrams,
the (2,1) mode is significantly reduced, and the (3,1) mode becomes the dominant resi-
dual mode. Increasing the number of actuators to three and then four leads to further
small reductions in the amplitude. However, the main effect is that the displacement
distribution becomes far more complex. This complex distribution in conjunction with
phase reversals across the plate leads to a low radiation efficiency and a reduction in
radiated power without significantly controlling the plate vibration as shown in Figures

24 and 25. Similar results have been seen in (Fuller, 1988; Dimitriadis and Fuller, 1989).
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This behavior is apparently due to the actuators controlling the lower order panel modes
and leaving the more complex higher order modes, which also have lower radiation effi-

ciency, as residuals.

Figure 25 indicates that for a disturbance input frequency of 148.8 Hz the (2,1) mode
dominates the radiation field. When one actuator is employed, it can be seen from
Figure 22 that virtually no reduction is achieved. It can also be seen that for the L,/2
plane the sound levels near 8 =0 have increased with one control applied. However, out
of this plane, the levels should be slightly reduced. When two actuators are employed,
significant reductions are now achieved. Increasing the number of actuators to three
has little effect, as the centrally located actuators do not effectively couple into impor-
tant n modes. However, when four actuators, arranged as shown in Figure 25, are used
to control the m- and n-modal response simultaneously, and a further reduction in ra-
diated levels and corresponding radiated power is achieved. In this case, to achieve

maximum attenuation, the results indicate that multiple actuators will be required.

Figure 26 shows the radiation directivity for the same actuator and disturbance
configurations, except for a excitation frequency of 108 Hz, i.e. an off-resonance
excitation case located between the (1,1) and (2,1) modes. For this disturbance input,
the (1,1) mode dominates the radiated primary field, as the (1,1) mode has a high struc-
tural response and radiation efficiency. When one actuator was used as shown in Figure
26, the radiated field is somewhat reduced but not nearly to the degree of the resonance
case of Figure 23. This is also illustrated by the corresponding total power reductions

which are 16.9 dB and 58.7 dB respectively.

This behavior can be understood with the help of the radiation patterns in Figure

26. For the case of one actuator, it is apparent that two modes, the (1,1) and (2,1), are
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contributing to the radiated field, as evidenced by the slight dip at § =0°. Thus the
single actuator minimizes the field by acting on the (1,1) mode while the (2,1) mode be-
comes important. The optimal voltage is then a compromise between the contribution
of each mode, i.e. further minimizing the (1,1) mode will lead to an increase in the (2,1)

due to spillover and vice-versa.

By applying two actuators, Figure 26 shows that further reduction is possible by
controlling the (2,1) and {1,1) simultaneously. Increasing the number of actuators from
three and then four leads to increased attenuation, as more modes are simultaneously
controlled. The final residual radiation field appears to have contributions from both

the (3,1) and (1,1) modes.

The off-resonance case thus requires more actuators for high control due to the
higher number of modes responding relatively strongly (in terms of radiated pressure)
being higher. The importance of the (1,1) mode, due to its high radiation efficiency, is
evident through the residual plots of Figure 26, even though the excitation frequency is

well off its natural resonance frequency.

Finally, Figure 27 presents the radiated acoustic power over a range of frequencies
up to kL, =6.96. The solid line denotes the radiated acoustic power for the disturbance
source alone. Several peaks are observed to occur where natural frequencies are located,
and the plate response is high. Note however (for examples) that large peaks are not
observed at the (2,1), (1,2), and (2,2) frequencies, as these modes have a low radiation

efficiency.

It is clear from Figure 27 that when the piezoelectric actuators are located along the

L,/2 axis, effective sound radiation control at low frequencies including the (1,1), (2,1)
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and (3,1) modes is obtained. However, for this symmetric configuration the (1,2), (2,2)
and (1,3) are uncontrollable, as can be observed in Figure 27. Increasing the piezoelectric
actuators to four (case (4) with some positioned off the L,/2 axis) leads, nevertheless, to
improved broad band power reduction. At very high frequencies, f ~ 1000 Hz, very
little attenuation is obtained. For example, for £ = 1000 Hz, the wavenumber ratio
y = 0.41 indicates that the radiation efficiencies of higher modes increase. Hence, a
higher modal density of the plate response is contributing to sound radiation. In other
words, a large number of plate modes is significantly involved in the sound radiation to
the far-field. More actuators or other control strategies, such as edge or corner radiation
control which is under investigation, are needed to control sound radiation from plates

subjected to high frequency excitation.

The results of Figure 27 are very encouraging, because they predict that the radiated
power from the plate can be controlled over the frequency range from 0 < f < 750Hz
with just four actuators (whose positions are not optimized). Table 7 shows that the
number of plate modes encompassed in this frequency range is 13. This result illustrates

the efficiency of the control approach.

3.5.1.2 Effect of Size of Actuators

In order to study the size effects of the actuators, a single primary source and single
actuator with a fixed central (of the actuator) location was studied at two different fre-
quencies. For Table 8, the center of the patch is at x = 190 mm, y = 150 mm. For
Table 9, the center of the patch is located at X = 170 mm, y = 150 mm, in other words,

asymmetrically positioned so that it can couple into the (2,1) mode. Table 8 and 9 give
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Table 8. Effect of size of piezoelectric actuators, f=68.4 Hz

—t  — .E} ....... -
ol
i
size of Voltage of radiated
case piezoceramic piezoceramic power
patch patch reduction
xxy (cm xcm) (volt) (dB)
1 1x1 221.55 A
2 2%2 55.51
3 3x3 24.76
4 4x4 14.00
5 6%6 6.32
6 10x10 2.38 58.7
7 12x12 1.71
8 15%x15 1.16
9 20x20 0.75
10 38%30 0.47 Y
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Table 9. Effect of size of piezoelectric actuators, f=148.8 Hz

...... L= 4-—---
!
—
size of Voltage of radiated
case piezoceramic piezoceramic power
patch patch reduction
xxy (cmxcm) (volt) (dB)
1 2x2 119.00 15.1
2 4x4 30.31 15.1
3 6%6 13.90 15.0
4 8x8 8.17 14.9
5 10%10 5.54 14.8
6 14x14 3.31 14.5
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the required optimal control voltage amplitude (with a different magnitude of
g =1 N/m? from that in the previous case studies) for a driving frequency of 68.4 and
148.8 Hz respectively. The location of the disturbance input and actuator is again

symbolically shown on the top of the tables.

Table 8 demonstrates that when the size of the actuator was increased, while the
power reduction was generally the same, the optimal voltage was decreased. Similar re-
sults can be observed in Table 9. It may be concluded that (at least for the two cases
considered here) the size of the piezoceramic patch does not appear to significantly affect
sound attenuation. However, the input voltages of the actuators are strongly dependent
upon size. Thus it is essential to choose the proper size of actuators such that the ap-
plied voltages are in the specified operating range for the piezoelectric material. Of
course, for other driving frequencies when the expanding patch may cross nodal lines
of important modes, then. different results may be obtained. The above examples are
meant only to illustrate an important operating characteristic of the piezoelectric ele-
ment. To determine the optimal voltages and size of piezoceramics for more general

configurations is out of the scope of this thesis.

3.5.1.3 Effect of Location of Actuators

In order to study the effect of actuator location, the number of disturbance inputs
has been increased to two each with magnitude of q = 20 N/m? and located symmet-
rically at both side of the plate and driven 180° out-of-phase such that the (2,1) mode
can be efficiently excited. The coordinates of the two uniformly distributed pressure
disturbance inputs are: (1) a=0.12m, @ =0.16m, b =0.13m, b, =0.17m; (2)

a =0.22m, a; = 0.26m, b, = 0.13m, b, = 0.17m.
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Figure 28 and Figure 29 show the vibration amplitude distribution and radiation
directivity for primary sources arranged to excite the (2,1) mode at 148.8 Hz, near the
(2,1) mode resonant frequency. When one actuator located in the center of the plate is
used, no control is achieved, because the actuator cannot couple into the (2,1) mode.
Next, the actuator was moved slightly to the left as shown (1b) in Figure 28 so that its
edge is located next to the nodal line. In this case, the vibration amplitude is signif-
icantly reduced, but the radiation field of Figure 29 shows only a relatively small re-
duction in level (although total power is reduced by over 18 dB) due to spillover into the
(1,1) mode as can be observed from the uniform radiation pattern. To effectively elimi-
nate the (2,1) mode with little spillover into the (1,1) mode, two independent actuators
are needed, as shown for case (2) in Figure 28. In this case, the vibration amplitude is
reduced to be a higher order residual, and the radiation field of Figure 28 shows very

high reductions in levels and power.

Finally, Figure 30 shows the radiated acoustic power versus frequency for the con-

figurations of Figures 28 and 29. The solid line for the primary sources does not dem-

onstrate any high peaks at odd-odd, odd-even and even-odd mode natural frequencies
due to the arrangement of the primary input. In Figure 30, the results for one centrally
located actuator (case la) are coincident with that for the disturbance; no control is
achievable for this actuator position. The actuator next to the (2,1) nodal line (case 1b)
can only reduce the radiated power by 18 dB at 148.8 Hz. However, two actuators can
be seen to provide high attenuations in radiated acoustic power over a wide range of
frequencies. Note that there is no attenuation at 490 Hz near the (4,1) mode resonant

frequency due to such a symmetrical arrangement of actuators.
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3.5.1.4 Summary

Active control of structurally radiated sound from a modally responding panel has

been analytically studied. The control inputs were multiple independently controllable

piezoelectric patches bonded to the panel surface. The work demonstrates that multiple

piezoelectric actuators have much potential for control of vibration and its associated

radiated primary field. Several significant observations may be summarized as follows:

Multiple piezoelectric actuators generally have better sound radiation control

characteristics than single actuators due to reduced spillover.

The location and number of actuators significantly affect the amount of sound
reduction achievable. For on-resonance, high attenuation can be generally
achieved with only one properly located actuator. However, for off-resonance,

multiple actuators are needed.

With proper choice of number and location of actuators, high sound atten-
uation over a broad frequency range up to approximately kL, = 5 for the con-

figurations considered here can be achieved.

Within limits, the size of the piezoelectric patch does not appear to significantly
affect sound attenuation. However, the input optimal voltages are strongly

dependent on the size of the piezoceramic patch.
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3.5.2 Incident Plane Wave Disturbance Controlled by Point Force or

Piezoelectric Actuators

In this section, plane acoustic waves incident on a simply-supported thin rectangu-
lar plate are considered as a primary input. Such a plane wave disturbance input will
result in high modal contribution at low plate wavenumbers as previously discussed.
The phase motion is thus dominantly by lower order modes acting as surface modes in
Region (3) of Figure 19. Either piezoelectric or point force actuators are employed as
structural control inputs to reduce the sound transmission through the plate. An opti-
mal control theory (Lester and Fuller, 1990), as discussed in Section 3.3, is adopted to
optimize the input complex voltages to the piezoelectric or point force actuators so as
to minimize the total radiated acoustic power, @,, as shown in Equation (3.23). The
optimal solution (i.e., the optimal voltages to be applied to actuators), is shown in
Equation (3.41). This has the effect of increasing the transmission loss of the plate. The
performance of the piezoelectric and point force actuators is evaluated for various input
frequencies and number and location of control inputs. Finally, a comparison between
the effectiveness of piezoelectric actuators versus point force actuators in terms of re-
duction of transmitted sound and power is made. The investigation is thought to lay
out the fundamental aspects of piezoelectric devices in terms of practical applications to
active control of sound transmission, in such applications as aircraft interior noise, ma-

chine hull noise and high transmission loss lightweight barriers.

The physical properties of the rectangular plate which was used for illustrating re-
sults here are the same as those shown in Table 6 except for the plate thickness A = 2

mm. Table 10 shows the natural frequencies of the simply supported plate for modes
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(m,n). The optimal process is suitable for controlling multiple primary sources; however,
only a harmonic incident plane wave with input parameters, 6,=45,¢,=0" and
P,= 10 N/m?, was considered for the following results. Both the radiation directivity and
plate displacement distribution were presented to demonstrate the control effectiveness

of sound transmission by using piezoelectric or point force actuators.

3.5.2.1 Effect of Number of Control Sources

3.5.2.1.1 Piezoelectric Actuators

Figure 31 shows the radiation directivity for the disturbance input consisting of an
incident plane wave on the plate at 8, = 45°, ¢, = 0° with circular frequency 85 Hz near
the (1,1) mode controlled by one, two and three piezoelectric actuators respectively. The
locations and size of the piezoelectric actuators are sketched to scale on the top of Fig-
ure 31. The primary source radiation directivity denoted by the solid line has the char-
acteristic shape of the dominant mode (1,1), as shown in Figure 21. For one
piezoelectric actuator located in the middle of the plate, the (1,1) mode is well controlled.
The remaining significant residual mode in terms of radiation is the (2,1) as shown in

Figure 31.

For two independently controlled piezoelectric actuators as illustrated on the top
of Figure 31, the actuators can control not only the (1,1) mode but also the (2,1) mode,
so that the (3,1) mode becomes the dominant mode. When three independently con-
trolled piezoelectric actuators are applied as shown in Figure 31, the actuators can si-
multaneously control several modes such as modes (1,1), (2,1) and (3,1); thereafter, the

remaining dominant radiating mode is a combination of modes (1,1) and (3,1). The total
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Table 10. Natural frequencies of plate h=2 mm (Hz)

87.71
188.74
357.13
592.88
895.98

h bW N

2

249.81
350.85
519.23
754.98
1058.08

3

519.98
621.02
789.40
1025.15
1328.25

4

898.22
999.25
1167.64
1403.39
1706.48

5

1384.53
1485.56
1653.95
1889.69
2192.79
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Figure 31. Radiation directivity pattern for different location of piezoelectric actuators, f=8S5 Hz
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reduction of radiated acoustic power shown in Table 11 is 76.16 dB for one piezoelectric
actuator, 79.42 dB for two and 96.81 dB for three. It may be concluded that increasing
the numbers of actuators leads to an increase in reduction of radiated acoustic power.
For all cases, however, significant reduction in the radiated sound pressure levels is
demonstrated. For this case, the practical limit of attenuation is seen to be achieved

with just one actuator.

Figure 32 presents the plate displacement distribution corresponding to the cases
of Figure 31. These distributions, partially decomposed into modal amplitudes of vary-
ing m with n=1, are also given in Table 12. The modal amplitude of the (m,n) mode
expressed in dB is normalized by that of the (1,1) mode due to the incident plane wave
alone. As expected, the (1,1) mode dominates the plate vibration due to the disturbance
input harmonically excited near the (1,1) mode resonant frequency. When one
piezoelectric is employed, the (1,1) mode is well controlled; however, the significant en-
ergy is spilled into the (3,1) mode, and the amplitude of the (3,1) mode is raised. The
residual plate displacement distribution thus takes on the shape of the (3,1) mode. Note,
however, that the (2,1) amplitude is unchanged due to the central location of the single
actuator. This result accounts for the sound radiation pattern observed in Figure 31.
When two actuators are employed, the (2,1) amplitude is now reduced, but further con-
trol spillover occurs into the (3,1). However, the total sound power radiated falls due
to cancellation of other plate modes leading to plate displacement distribution appearing
as higher mode response with a lower radiation efficiency as discussed in Section 3.4.4.
The results correspond to what is termed “modal restructuring” (Fuller, Hansen and
Snyder, 1990c). Finally, when three actuators are used, the (1,1) and (2,1) amplitudes
remain attenuated, and control spillover to the (3,1) is now observed in Table 12. This

is also reflected in the displacement plot of Figure 32 which appears to have a shape,
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Table 12. Modal amplitude of plate vibration (dB), f=85 Hz

Incident 1-Piezo 2-Piezo 3-Piezo

m n=1 n=1 n=1 n=1
1 0.00 -43.07 -43.23 -48.18
2 -55.25 -55.25 -89.71 -89.72
3 -57.87 -35.35 -30.51 -43.66
4 -82.97 -82.91 -68.89 -68.89
5 -78.73 -44.79 -45.04 -44.85
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due to the response, of many higher order modes. This higher mode plate response re-
sults in volumetric cancellation, and thus explain the high power reduction as observed

in Figure 31.

For the next results, the circular frequency of the incident plane wave was increased
to 190 Hz near the resonance of the (2,1) mode. Figure 33 shows the resultant radiation
directivity for one, two and three piezoelectric actuators with the same size and locations
as those in Figure 31. As can be seen, the primary field appears to have the shape of a
distorted (2,1) mode; that is logical, since the mode is near the excitation frequency and
will dominate the response. This is supported by the results of Table 13 which are
maximum contributions of plate modes to the total radiated sound pressure at R = 10
m. This table reveals that the (2,1) mode is indeed dominant, and the next most im-

portant mode is the (1,1); both modes account for the distorted radiation directivity

pattern due to the obliquc‘incident plane wave 6, = 45°, ¢, =0°.

When one piezoelectric actuator is used, Table 13 shows that the (1,1) contribution
is reduced, and this is supported by Figure 33 which now shows a symmetric radiation
pattern similar to the (2,1) thus confirming the removal of the (1,1) contribution; how-
ever, there again has been significant spillover into the (3,1) mode which accounts for
the mode at § = 0° not being identically zero. The (2,1) is uncontrollable due to the

central location of the actuator.

The number of actuators were again increased to two, and now significant control
of the (2,1) contribution is observed both in Figure 33 and Table 13. This is, of course,
due to the location of the two piezoelectric element which can now couple into the (2,1)

mode. Note that the residual field in this case has the characteristic shape of the (3,1)
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Figure 33. Radiation directivity pattern for different location of piezoelectric actuators, =190 Hz
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Table 13. Modal amplitude of sound pressure (dB), f=190 Hz

Incident
n=1

=S

-13.10

0.00
-43.06
-68.92
-70.46

N AWK -

1-Piezo
n=1

-22.04

0.00
-23.55
-68.92
-39.87

2-Piezo

n=1

-9.92
-68.55
-7.26
-54.49
-28.40

3-Piezo

n=1

-26.48
-68.55
-31.76
-54.49
-38.11
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mode. On increasing the number of actuators to three, control is now achievable over

the (1,1), (2,1) and (3,1) contributions simultaneously, and large reductions are achieved.

Figure 34 gives the displacement distribution corresponding to the cases of Figure
34. 1t is interesting to note that little change occurs in the displacement distribution
when one control element is used, although significant change in the radiation field are
observed. This result is due to the fact that the (1,1) mode has a much higher radiation
efficiency than the (2,1), thus its displacement response may be far lower than the (2,1),
but it can still contribute significantly to the radiated field; hence, small changes in plate
response can lead to large changes in the radiated field. It is also apparent that the total
plate response increases at x/L, = 0.5, and this is due to spillover into the (3,1) mode.
However, this is again not manifest in an increase in radiated levels due to the phe-
nomenon of “modal restructuring” (Fuller, Hansen, and Snyder, 1990c). The character-
istic of modal restructuring implies that when control is applied, the plate response is
not globally reduced but possibly even increased and changed to a higher order response.
This higher order plate response generally has a smaller radiation efliciency; therefore,

sound radiation from the plate is eventually attenuated, even though plate response has
increased. Similar results can be observed for other actuator configurations in Figure

34 and correspond well to what is seen in Figure 33 and Table 13.

3.5.2.2 Comparison Between Piezoelectric and Point Force Actuators

It will be of great interest to compare the control performance between piezoelectric
and point force actuators. Piezoelectric actuators have been recently introduced to ac-
tive structural acoustic control, while point force actuators are customarily used. The

radiation directivity patterns and displacement distributions for using point force
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actuators were found to be similar to those for using piezoelectric actuators in Figures
31, 32, 33 and 34. Thus, these results were not shown, instead, a comparison between
piezoelectric and point force actuators in terms of control performance was made. In
order to compare the control effectiveness of piezoelectric actuators with that of point
force actuators, the point force was chosen to be located at the center of a piezoceramic
patch. The effects of size and location of the piezoceramic patch, however, were not
addressed in this paper. Previous section discussed these effects and demonstrated that
the locations of actuators were best chosen where the plate has the largest response.
Here the radiation directivity, plate displacement distributions and total reduction of
radiated acoustic power were shown to evaluate the relative performance of piezoelectric

and point force actuators.
3.5.2.2.1 One Actuator

Figure 35 shows the radiation directivity for a frequency of f= 85 Hz near the (1,1)
mode resonant point. In this case, the control achieved by a single centrally located
piezoelectric element and point force actuator is compared. Both the piezoelectric and
point force actuators have nearly the same control effectiveness of sound radiation;
however, the results of Figure 36, which are plate displacement distribution, indicates
that the point force actuator gives better performance in terms of plate displacement,
and its residual amplitude is less than that of the piezoelectric element. This can be in-
terpreted as the point force actuator leading to less control spillover than the
piezoelectric element contrary to what was previously understood about distributed
actuators. The reason for this behavior is not presently understood; however, it is under

investigation. Some potential ideas will be discussed in Section 3.5.2.2.3.
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Figure 35. Radiation directivity pattern for one disturbance and one actuator, f=385 Hz
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3.5.2.2.2 Two Actuators

In the next comparison, the excitation frequency was increased to 190 Hz near the
(2,1) mode resonant frequency. In this case, the (2,1) mode dominates the radiation field
with significant contribution from the (1,1) mode, and the point force actuators clearly
out perform the piezoelectric actuators in terms of reduction of radiated levels as shown
in Figure 37. This is also observed in Figure 38 which are plots of the corresponding
displacement distributions. It is apparent that the use of point force actuators has again
lead to significantly less spillover into the residual (3,1) mode than the use of

piezoelectric actuators.

3.5.2.2.3 Three Actuators

For a stringent comparison test, the excitation frequency was now reduced to 140
Hz which is off-resonance-between the (1,1) and (2,1) mode resonant frequencies. Being
off-resonance, it is expected that more modes can contribute to the plate response, and
the radiated field thus exacerbating control spillover effects. Figures 39 and 40 give the
radiation directivities and displacement distribution of this frequency. Again, it is ap-

parent that the point control forces lead to less spillover and improved control per-

formance in terms of reduction of radiated sound level than piezoelectric excitations.

Finally, Table 11 summarizes the total reduction of radiated acoustic power for
three different excitation frequencies with either one, two or three piezoelectric patches
or point forces as control sources. These results confirm that point forces indeed give
better performance on a global basis than the piezoelectric elements. As stated previ-
ously, this result is somewhat contrary to what was expected. The distributed control

(i.e. in this case piezoelectric elements) is expected to give improved performance due to
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the fact that the distributed element can couple into less modes leading to less spillover.
However, on-going work stimulated by this result tends to point toward this distributed
nature to be a disadvantage rather than an advantage, because the piezoelectric actuator
generates line moments along the edges of the actuator, but not in the form of distrib-
uted inputs over the area of the piezoceramic patch. This work has revealed that sound
reduction occurs by the plate system assuming new eigenvalues and eigenfunctions
(mode shapes) under feedforward control (Burdisso and Fuller, 1990). Highest reduction
in sound levels is achieved by creating new modes with the lowest total response and/or
radiation efficiency. In this case, a point force is an ideal actuator, as it is equally cou-
pled to all uncontrolled modes in the wavenumber domain, while the piezoelectric ele-
ment has reduced coupling and thus resulted in a reduced range of achievable modal
modification, (i.e., the degree of modal restructuring is limited). However, this topic is
out of the context of this thesis and will be the subject of another work. It is also in-
teresting to note that the original concepts concerning the improved performance with
distributed control were rnade from studies which considered an infinite number of point
forces distributed over a beam (Meirovitch and Norris, 1984). Although piezoceramics
are in a sense distributed, they exert a constant control input over finite regions of the
structure, which is significantly different from the configuration of Meirovitch and
Norris (1984), and this characteristic is believed to lead to the different conclusion ob-

served in this work.

Transmission loss defined in Equation (3.87), is an index of how much acoustic
power is transmitted through the panel. Figure 41 shows the transmission loss over the
frequency range 10 to 1000 Hz for the disturbance input of an incident plane wave and

involving four separated cases of comparative control. For the controlled cases, the
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heavy lines correspond to piezoelectric actuators while the light lines correspond to point

force control.

For the incident plane wave disturbance, the transmission loss can be seen to dip at
the resonant frequencies of the plate; however, the magnitude of the dip depends on the
resonance modal number. For example, near 190 Hz the dip is fairly small. This be-
havior is due to the (2,1) mode being a very inefficient radiator, and thus its plate re-
sponse needs to be extremely high (i.e., right on resonance) for it to dominate the sound

radiation field.

It can be seen that the use of both types of actuators leads to increased transmission
loss over the frequency range except at a number of frequencies corresponding to
asymmetric modes in modal number n. These modes have nodal lines at the actuator

locations and are thus uncontrollable.

Figure 41 also exhibits an interesting behavior. As the number of actuators is in-
creased, not only the transmission loss is seen to increase but also the dips which indi-
cate the resonant frequencies of the controlled plate system have been shifted to higher
frequencies. These shifted dips can be possibly visualized as the new eigenproperties of
the controlled plate system as studied by Burdisso and Fuller (1990) for feed-forward
control of a one dimensional beam. One would expect that the transmission loss would
dip at the new eigenvalues or resonant frequencies of the closed loop system. It is
thought that the phenomenon investigated by Burdisso and Fuller (1990) is occurring

here.
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For the single actuator, the piezoelectric and point force actuators give about the
same performance especially at lower frequencies. However, some differences are ob-

served about the (3,1) resonance for the reasons discussed above.

3.5.2.3 Summary

The active control of a plane sound wave transmitting through a rectangular plate
at an angle has been analytically studied. Both piezoelectric and point force actuators
are considered while the control cost function is derived from the far-field radiated
acoustic power. The performance of the control system for an increasing number of
control inputs is studied, and the attenuations obtained for point force and piezoelectric
actuators are compared. The results show that both piezoelectric and point force
actuators provide high reductions of sound transmitted through the plate if the proper
size, number and location of actuators are chosen. In general, as the number of

actuators is increased, higher reductions are observed.

A very interesting result observed was that point force actuators were seen to per-
form slightly better than piezoelectric actuators. This result is contrary to present beliefs
about distributed actuators and is presently under detailed investigation. However,
piezoelectric actuators possess a number of advantages, such as lightweight, low cost
and compactness, over point force transducers. The study thus indicates that
piezoelectric patch type actuators show much potential for active control of sound and

vibration.
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3.5.3 Near-Field Pressure and Intensity Distributions

Previous sections have demonstrated the potential of multiple piezoelectric
actuators as control sources in conjunction with distributed pressure sensors in the far-
field to actively control sound radiation from structures, and showed the importance of
properly selecting the number and location of actuators as key to efficient control of
sound radiation. The far-field radiation directivity patterns as well as plate displacement
distributions were presented to evaluate the control performance and mechanisms.
However, little work has been done on studying the near-field pressure distributions and
the radiated intensity distributions under the same conditions. These parameters are
important for a number of reasons amongst which are they provide further insight into
the control physical processes. It is also hoped to overcome the use of error micro-
phones located in the far-field by the use of sensors near or on the structure. In this
context, near-field pressure should provide insight into the configurations of near-field

sensors required in order to provide reduction in far-field pressures.

The objective of this section is to extend the analysis presented in previous sections
to evaluate near-field pressure and time-averaged intensity distributions. In order to
obtain the intensity distributions, the finite difference method of Pettersen (1979) will
be used. A brief discussion is given in Section 3.4.2. This method has been used suc-
cessfully by a number of authors to efficiently evaluate intensity distributions in complex
radiating acoustic fields (Krishnappa and McDougall, 1989; Kristiansen, 1981). As dis-
cussed by Thompson and Tree (1981), the finite difference approximation errors in
acoustic intensity measurements are less than 2 dB from 0 to 10 kHz for a spatial sam-

pling separation of 8§ mm.
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"In this study, a simply-supported finite plate embedded in an infinite rigid baffle was
considered as the structure. The plate was excited by a steady state harmonic disturb-
ance in the form of an oscillating point force. Control inputs were applied by
piezoelectric actuators bonded to plate surfaces, while error information was taken from
a number of microphones located in the radiated acoustic far-field. In contrast to
Sections 3.5.1 and 3.5.2 in which the total radiated power (distributed pressure sensors)
is chosen as a cost function, the sum of mean square pressures measured by a number
of discrete microphone sensors is now considered as the cost function. The optimal
solution derived from Linear quadratic optimal control theory is shown in Section 3.5.3.
Under this control condition, the near-field pressure (Equation (3.17)) and time-averaged
intensity distributions (Equation (3.92)) were evaluated, while the plate uncontrolled and

controlled motion was studied in this Section in the wavenumber domain.

For brevity, this section only considers response of the plate of thickness 2 mm near
the (3,1) response frequency. Table 6 gives the physical properties of the rectangular
simply supported plate (except h = 2 mm), while Table 10 provides the associated na-
tural frequencies of the plate. For simplicity, a single harmonic point force of amplitude
F = 1 N located at x;=0.3163 m, y,=0.15 m (i.e., at one sixth of the plate length and
middle of the plate width), in order to effectively excite the (3,1) mode, was used as the
primary disturbance. Likewise, a single control piezoelectric actuator of thickness
£,=0.1905 mm and dielectric constant of d; = 166 x 10-12 m/V was employed, centrally
located at x;=0.15825 m, x,=0.22175 m, = 0.1309 m, y.=0.16905 m. The piezoelectric
actuator is arranged not to activate even-even, even-odd and odd-even modes so as to
simplify the control situation. Therefore, the mechanism and characteristics of this

control technique can be conveniently studied. A single error sensor was assumed lo-
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cated at either (R, 6, ¢) = (1.8m,0°, 0°); termed mike # 1 or (1.8m,50°, 0°); termed mike

#2.

Both pressure and the normal time-averaged intensity (i.e., the z component) to the
X-y plane were calculated at a distance of 20 mm above the plate and expressed in dB
re 20p Pa for pressure and dB re 10-2W/m? for intensity. In addition, the vector in-
tensity components in x-z plane (i.e., vector sum of the z and x component) located at
the central line of the plate in the y direction (i.e., y = L,/2 } as well as the far-field ra-
diation directivity in the same plane at a distance of R = 1.8 m were calculated. A
k-plane (plate wavenumber) analysis of the plate response, which is discussed in Section
3.4.3, was performed. The wavenumber spectra of modal velocity was plotted along the
k, and k, axis. The k, and k, are structural modal wavenumber, as tabulated in Table

S.

The near-filed pressur? was obtained directly by integrating Equation (3.17) using
the Simpson’s one-third rule approach. These complex pressures were then used in the
finite difference calculations of the intensity equations of Section 3.4.2 with a spacing
of 1 mm. The modal sums in the above equations were truncated at m=n=35, i.e., 25
modes were included in the analysis. This number of modes was found to provide suf-
ficient convergence of series in Equations (3.1) and (3.16). In particular, for the study
of the behavior of the (3,1) mode, the plate displacement and the radiated sound pressure
have no more than 0.01 9, difference in comparison to those results for including 100

modes (i.e., m=n=10).
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3.5.3.1 Pressure and Intensity Distributions

Figure 42 presents the far-field radiation directivity patterns for a frequency of 357
Hz, which can be seen from Table 10 to be close to the (3,1) resonance point. The solid
line denotes the primary field and can be seen to fairly constant with radiation angle.
This behavior is due to the relatively long wavelength of the acoustic radiation relative
to plate size, leading to the higher order plate mode giving a radiation field which is
volumetric or monopole-like, i.e., the situation corresponds to an edge mode of case (b)

of Figure 20 discussed previously.

The controlled field is shown as a dashed line when the error sensor is located at
0=0°; the primary field is strongly attenuated globally, and the residual field exhibits a
dipole like radiation pattern due to the position of the error microphone. When the er-
ror microphone is moved to 8= 50°, similar values of attenuation are achieved; however,

the null in the residual radiation field has moved to this angle.

Although the different location of error microphone results in different residual ra-
diation pattern, the optimal voltages peak-to-peak applied to the piezoelectric actuator
are 24.96 V and 24.93 V for the error microphone at §=0° and 50° respectively. The
total acoustic power reduction achieved in the two cases are 57.18 dB for §=0° and
51.68 dB for 6= 50° respectively. The slight difference of voltage inputs and total power
reduction for these two cases is due to the (3,1) mode response which results in non-
uniform radiation directivity (i.e., different sound pressure level at the locations of the
two error microphone positions). As seen in Figure 42, the sound pressure level at

60=0° is higher than that at §=50°. While the error microphone signal is to be driven
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Figure 42, Radiation directivity for 2 mm plate, =357 Hz
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to zero, the use of the error microphone at = 0° will result in more pressure reduction
than that at §=50°. Therefore, the case of error microphone at 8 =0° requires addi-
tional 0.03 V of control voltage and perform slightly better than the case of error

microphone at = 50°.

The corresponding near-field pressure distributions in the x-y plane for the primary
and controlled (error microphone at §=0°) fields are shown in Figures 43 and 44 re-
spectively. The primary field can be seen to exhibit the cell-like behavior associated with
the (3,1) mode shape of the plate, however, it is slightly distorted due to contribution
from the (1,1) mode. When control is applied, two changes in the near-field pressure
distribution of Figure 44 are observed. Firstly, the overall pressure amplitudes is reduced
by around 10 dB. Secondly, the complexity of the pressure field is markedly increased,
and there appears to be a semblance of a pressure node located around x = 100 mm.
It is this kind of behavior that is interesting for the design of near-field sensors. The
overall fall in near-field pressure indicates that if a distributed pressure sensor is located
above and completely covers the plate, then minimizing the near-field sensor output
might have the same control influence as a far-field point sensor, at least for plate modes
on resonances. In effect, the use of a large distributed pressure sensor located near the
plate may lead to an “unloading” of the plate radiation field and a drop in power; the

plate will “see” a radiation impedance approaching zero.

Figures 45 and 46 give the corresponding normal intensity distributions to Figures
43 and 44. Regions of outgoing and ingoing intensity to the plate are marked (+) and
(-) respectively. The primary field of Figure 45 strongly indicates the (3,1) plate behav-
ior. As can be seen, the two outer cells give positive or outgoing intensity, while the
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