
Contents lists available at ScienceDirect

Journal of Sound and Vibration

Journal of Sound and Vibration ] (]]]]) ]]]–]]]
0022-46

doi:10.1

n Corr

E-m

Pleas
cont
journal homepage: www.elsevier.com/locate/jsvi
Modal analysis by free vibration response only for discrete
and continuous systems
Bor-Tsuen Wang n, Deng-Kai Cheng

Department of Mechanical Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
a r t i c l e i n f o

Article history:

Received 27 July 2009

Received in revised form

14 February 2011

Accepted 23 March 2011
Handling Editor: I. Trendafilova
velocity and acceleration, can be obtained through numerical differential or integration
0X/$ - see front matter & 2011 Elsevier Ltd.

016/j.jsv.2011.03.024

esponding author. Tel.: þ886 8 770 3202x70

ail address: wangbt@mail.npust.edu.tw (B.-T.

e cite this article as: B.-T. Wang, &
inuous systems, Journal of Sound and
a b s t r a c t

This work aims to develop the algorithm for modal analysis by free vibration response

only (MAFVRO), in particular for the general or non-proportional viscous damping

system model. If the structural displacement or acceleration response due to free

vibration can be measured, the system response matrices, including the displacement,

methods. These response matrices can then be applied to the developed MAFVRO

method to determine the structural modal parameters. The numerical differential and

integration methods are introduced and adopted to establish the modal parameter

prediction program for the non-proportional damping model of MAFVRO. This work

also shows the applications of MAFVRO to the multiple degree-of-freedom (mdof)

systems and the cantilever beam, respectively. Both the discrete and continuous

systems are demonstrated for the feasibility of the MAFVRO algorithm. The developed

method uses the free vibration output response only and can obtain the structural

modal parameters successfully.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The knowledge of structural modal parameters is of great interest. Natural frequencies generally account for the
structural mass and stiffness distributions. Mode shape patterns corresponding to the natural frequencies can be
informative for structural design consideration or other monitoring purposes. Structural modal damping ratios are also
of importance for theoretical simulations, since they are not theoretically available in general. In particular, experimentally
extracted modal parameters can be useful for analytical model validation, structural design modification, response
simulation for optimum design, force prediction, structural monitoring or damage detection. Experimental methods to
identify the structural modal parameters are necessary.

In conventional experimental modal analysis (EMA) [1,2], the test structure is usually assumed to be at rest and
without other external excitation during modal testing. For practical applications the test subject can be in operational
conditions. The operational modal analysis (OMA) approach has drawn much attention. The operational conditions can be
featured in several regimes, such as ambient excitation, natural source, free response and unknown or uncontrolled inputs.
Therefore, output-only modal analysis (OOMA) is also termed and interested.

The selection of excitation forms and sensors is of importance in EMA. Wang [3] presented the theoretical formulation
of generic frequency response functions (FRFs) for continuous systems and provided the theoretical base for applying
various forms of actuators and sensors to structural modal testing. In EMA, the excitation should be controllable and
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measurable. The impact hammer is frequently used as the actuator and the accelerometer as the sensor via a FFT analyzer
to obtain the system FRFs between the excitation and the structural response. One can obtain structural modal parameters
including natural frequencies, mode shapes and modal damping ratios using a curve-fitting process or modal parameter
extraction methods. This traditional approach is categorized as input–output modal analysis. This work will focus on the
output-only modal analysis for free vibration response only.

For the traditional EMA requiring FRFs, the operational modal analysis for frequency domain decomposition (FDD)
methods [4,5], that have been developed and widely adopted for modal identification, starts from spectral density functions
of system response. Cauberghe et al. [6] presented a combined experimental-operational modal analysis method to estimate
the modal parameters by using the Fourier spectra of the outputs and known input. Magalhaes et al. [7] used the ambient
vibration test (AVT) data for the modal identification of a cable-stayed bridge by Enhanced frequency domain decomposition
(EFDD) and Stochastic Subspace Identification (SSI) methods. Gentile and Gallino [8] also applied the peak picking method
and the EFDD techniques to extract the modal parameters from ambient vibration data for a suspension footbridge. For the
above mentioned approaches, the fast Fourier transform (FFT) operation is generally required and causes the complexity for
numerical operation of measured data in signal processing. This work mainly adopts the time domain method for requiring
only free vibration response data and related matrix operations to determine structural modal parameters.

Another category of time domain modal identification approach is the autoregressive (AR) method. Moore et al. [9]
presented an autoregressive moving average with exogenous excitation (ARMAX) time-domain parameter estimation
algorithm to identify modal parameters of structures in the presence of significant measurement noise and unmeasured
sources of periodic and random excitation. Larbi and Lardies [10] presented a time-domain procedure using the vector
autoregressive moving-average (VARMA) process for identification of modal parameters of vibrating systems from
multiple output data only based on the estimation of multivariate autoregressive (AR) coefficients using a maximum
likelihood technique. Papakos and Fassois [11] presented a comprehensive autoregressive (AR) and linear multistage
autoregressive moving average (LMS-ARMA) method for multi-channel identification of structures under unobservable
excitation. The approach was demonstrated for modal identification of an aircraft skeleton structure.

Other special techniques in EMA are also developed. Devriendt and Guillaume [12] introduced an approach to identify
modal parameters from output-only transmissibility measurements and demonstrated by means of an experimental test on
a clamped beam. Devriendt and Guillaume [13] developed a transmissibility-based approach for output-only modal
analysis where the unknown operational forces can be arbitrary. Parloo et al. [14] provided the estimation of the operational
scaling factor by performing the experiment adding a controlled mass on the test structure so as to determine the
normalized mode shape vector. Parloo et al. [15] further applied the idea to identify the force in operational condition
during output-only modal analysis. Abdelghani et al. [16] presented the subspace-based damage detection and isolation
algorithms for on-line structural monitoring of an airplane structure under unknown excitation. The modal results from the
output-only subspace-based modal analysis are compared with those from the modal appropriation method [17], which is
based on a pure sinusoidal excitation of the structure to obtain the modal parameters of one mode in each experiment.

For free vibration response modal analysis methods, Huang and Su [18] proposed an approach based on the continuous
wavelet transform (CWT) to identify modal parameters of a linear system from its seismic response with the knowledge of
source excitation. This method is applicable for the case of free decay response. Their approach employed the time
invariance property and filtering ability of CWT to improve data processing efficiency. The approach was validated to
obtain modal parameters for a three-story non-symmetric steel frame in a shaking table. Lardies [19] presented a time
domain method from multi-output sensors only for modal parameter identification. The method used Cayley–Hamilton
theorem to find a set of scalar parameters related to the modal properties of a vibrating system and required only
knowledge of the covariance matrix of signals.

Wang and Cheng [20] proposed an algorithm of modal analysis from free vibration response only (MAFVRO). Their
formulation is limited to the proportional viscous damping based on normal mode analysis. The natural frequencies and
mode shape vectors for mdof systems can be successfully obtained. This work extends the MAFVRO to the general or non-
proportional viscous damping cases. The complex mode analysis is adopted and thus the natural frequencies, complex
mode shapes and modal damping ratios can be determined, simultaneously.

The MAFVRO method is inspired from Zhou and Chelidze [21] who used the free vibration response data and adopted
smooth orthogonal decomposition (SOD) method to extract normal modes of discrete system requiring the prior
knowledge of mass matrix. Feeny and Kappagantu [22] may be the first to discuss the modal analysis for structure in
free vibration condition. They adopted proper orthogonal decomposition (POD) or so called Karhunen Loeve decomposi-
tion (KLD) to obtain mode shape vectors only. Han and Feeny [23] applied POD to obtain proper orthogonal mode (POM)
that is the structural normal mode. The practical limitation is that the mass matrix must be proportional to the identity
matrix. The MAFVRO algorithms presented in this work require no prior knowledge of system matrices in obtaining modal
parameters, in particular the complex mode is also considered for the non-proportional damping model rather than the
normal mode analysis in the proportional damping model [20].

This paper derives the complete MAFVRO formulation for both the proportional and non-proportional viscous
damping models in Section 2 and considers both the displacement sensors and accelerometers applications, respectively,
in Section 3. Section 4 introduces the development of MAFVRO application program in MATLAB software. Section 5
demonstrates the applications of the MAFVRO algorithm to the mdof discrete systems and the beam structure, i.e. a
continuous system.
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2. MAFVRO formulation

Consider an mdof vibration system with viscous damping. The general form of equation of motion can be expressed as
follows:

M €xþC _xþKx¼ f: (1)

The initial conditions are:

xð0Þ ¼ x0, (2)

_xð0Þ ¼ v0: (3)

M, C and K are the n�n mass, damping and stiffness matrices of the mdof system, respectively, and n is the number of dofs
for the system. x0 and v0 are the initial displacement and velocity vectors, respectively.
2.1. Proportional viscous damping model

For the proportional viscous damping, the following relation holds:

C¼ aMþbK, (4)

where a and b are some constants. For normal mode analysis, let

x¼Xeiot : (5)

By the substitution of Eq. (5) into Eq. (1) and the assumptions of f¼0 and C¼0, the generalized eigenvalues problem can be
formulated:

KX¼o2MX (6)

or

M�1KX¼o2X: (7)

By solving the above equation, n-pair of eigenvalues o2
r and eigenvector Xr can be obtained. Physically, or ¼ 2pfr is the rth

natural frequency in rad/s, fr is in Hz, and Xr¼/r is its corresponding mode shape vector.
The following derivation is partly adopted from Wang and Cheng [20]. They showed the formulation to determine

modal parameters from the free vibration response, i.e. f¼0. For the proportional viscous damping model without the
prescribed force, the system equation becomes

M €xþðaMþbKÞ _xþKx¼ 0: (8)

Rearrange the above equation

Mð €xþa _xÞ ¼�Kðxþb _xÞ: (9)

Then

M�1K¼�ð €xþa _xÞðxþb _xÞ�1: (10)

By comparing Eqs. (10) and (7), one can conclude that if the system responses x, _x and €x are known, M�1K can be
formulated and used to solve for the eigenvalues and eigenvectors. The drawback of the formulation is the requirement of
prior knowledge of constants a and b. For the proportional viscous damping model, i.e. the normal modes of the system,
the natural frequencies ôr ¼ 2pf̂ r and mode shape vectors /̂r can be obtained, in particular /̂r is real. The symbol 4

denotes the solutions from the proportional model.
Consider the system displacement response matrix as follows:

XðtÞ ¼ ½X�Nk�n ¼

x1,k x2,k � � � xn,k

x1,kþ1 x2,kþ1 � � � xn,kþ1

^ ^ & ^

x1,kþNk�1 x2,kþNk�1 � � � xn,kþNk�1

2
66664

3
77775¼

x1,k

x2,k

^

xn,k

8>>>><
>>>>:

9>>>>=
>>>>;

x1,kþ1

x2,kþ1

^

xn,kþ1

8>>>><
>>>>:

9>>>>=
>>>>;
� � �

x1,kþNk�1

x2,kþNk�1

^

xn,kþNk�1

8>>>><
>>>>:

9>>>>=
>>>>;

2
66664

3
77775

T

¼ ½fxgkfxgkþ1 � � � fxgkþNk�1�
T, (11)

where xr,k¼xr(tk) denotes the displacement of the rth dof at time tk as depicted in Fig. 1. k is the starting point, and Nk is the
total number of points adopted for MAFVRO algorithm. [ ] and { } denote the matrix and vector, respectively. The
superscript T denotes the transpose operation on the matrix. Similarly, the system velocity and acceleration response
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Fig. 1. Diagram for the time domain response.
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matrix can also be defined

_X ¼ ½ _X � ¼ ½f _xgkf _xgkþ1 � � � f _xgkþNk�1�
T, (12)

€X ¼ ½ €X � ¼ ½f €xgkf €xgkþ1 � � � f €xgkþNk�1�
T: (13)

Eq. (10) can then be rewritten as follows:

M�1K¼�ð €XT
þa _XT

Þðb _XT
þXT
Þ
�1: (14)

The measurement and derivation of those response matrices will be discussed in Section 3.

2.2. Non-proportional viscous damping model

For the general or non-proportional viscous damping, the following equilibrium equation is invoked:

M _x�M _x ¼ 0: (15)

By combining Eqs. (1) and (15), the system equation can be rewritten as follows:

A _yþBy¼ P, (16)

where

A¼
0 M

M C

� �
, B¼

�M 0

0 K

� �
, y¼

_x

x

� �
, P¼

0

f

� �
: (17)

Let

y¼ Yelt : (18)

By substitution of Eq. (18) into Eq. (16) and the assumption of zero external force vectors f¼0, i.e. P¼0, the eigenvalue
problem can be formulated as follows:

BY¼�lAY (19)

or

ð�A�1BÞY¼ lY: (20)

By solving the above equation, 2n-pair of complex conjugate eigenvalues and their corresponding eigenvectors can be
obtained:

lr-Yr

l�r-Y�r
, r¼ 1,2,:::,n,

(
(21)

where

lr

l�r
¼ Re7 iIm ¼�zror 7 ior

ffiffiffiffiffiffiffiffiffiffiffiffi
1�z

2

r

q
: (22)

The equivalent natural frequency and modal damping ratio can be determined:

or ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

eþ I2
m

q
, (23)

zr ¼
�Reffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

eþ I2
m

p (24)

and

Yr ¼

_Xr

Xr

( )
, Y�r ¼

_X
�

r

X
�

r

8<
:

9=
;: (25)
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where or ¼ 2pf r , zr and /r¼Xr are the rth natural frequency, modal damping ratio and displacement mode shape vector,

respectively. The bar symbol is to denote the solutions from the complex mode analysis, in particular for the non-
proportional viscous damping.

Similar to the derivation of the proportional viscous damping model for MAFVRO, this work is mainly to extend the
MAFVRO for the non-proportional viscous damping model. The system equation in Eq. (16) without the prescribed force,
i.e. P¼0, is as follows:

A _yþBy¼ 0: (26)

One can obtain

�A�1B¼ _yy�1¼
€x

_x

( )
_x

x

� ��1
: (27)

From the definition of the system displacement, velocity and acceleration response matrices as shown in Eqs. (11)–(13),
the above equation becomes

�A�1B¼
€X

T

_XT

( )
_X

T

XT

( )�1
: (28)

By comparing Eqs. (20) and (28), one can see that if the system response matrices are known, �A�1B can be formulated
and used to solve the eigenvalues and eigenvectors. Therefore, the system modal parameters as shown in Eqs. (23)–(25)
can be obtained. This approach is the main idea of MAFVRO for the non-proportional viscous damping.

Note that the MAFVRO algorithms for both proportional and non-proportional viscous damping mdof systems are

formulated. Only the rth natural frequency (ôr) and its corresponding mode shape (/̂r) can be obtained for the

proportional viscous damping model and the normal mode analysis is assumed, i.e. /̂r is the real mode. For the non-
proportional viscous damping model, the complex mode analysis is adopted, so the equivalent natural frequency (or) and

modal damping ratio (zr) can be obtained from Eqs. (23) and (24). The mode shape vector (/r) is essentially complex.
The novelty of MAFVRO for the non-proportional viscous damping in this work is that only the system transient response,
such as the displacement or acceleration, is required to formulate the response matrices as described in Eqs. (11)–(13) and
to obtain �A�1B as shown in Eq. (28). The modal parameters of the system can be predicted as discussed. Section 3 will
show the formulation of system response matrices for different types of sensors.

It is also noted that the developed MAFVRO approach for mdof systems can be applied to a continuous structure as well.
If the structure is divided into m measurement points, and single axial measurement is applied at each point, then the
number of measurement points m can be considered as the dofs of the equivalent lumped mass system, i.e. the number of
dofs becomes n¼m. The formulation of MAFVRO can still be valid for continuous systems. The case study for the beam
structure in Section 5 will be shown to demonstrate the application of MAFVRO to the continuous system.

3. Different sensor applications

Section 2 shows the theoretical formulation of the MAFVRO algorithm for both the proportional and non-proportional
viscous damping models. The requirement of the algorithm is to provide the system displacement, velocity and
acceleration response matrices due to free vibration. Wang and Cheng [20] illustrated the use of displacement sensor
for the proportional viscous damping model of MAFVRO. This section will show the implement for selecting different
sensors, in particular for the accelerometer that is frequently used.

If the displacement sensor is used to measure the system displacement response, xr(tk)¼xr,k, as illustrated in Fig. 1, the
velocity and acceleration can be determined by finite difference method. Table 1 shows the formulas to evaluate the
velocity and acceleration. Wang and Cheng [20] showed the matrix operations on response matrices, which are omitted
here for brevity. The high-order formula can provide more accurate results as desired.

If the accelerometer is used, the acceleration at the rth dof €xrðtkÞ ¼ €xr,k can be measured. Table 2 shows the numerical
formulas to evaluate the velocity and displacement, respectively. Therefore, both Eqs. (14) and (28), for the proportional
Table 1
Numerical methods to evaluate velocity and acceleration from displacement [19].

Method Velocity Acceleration

First-order backward formula vr,k ¼ _xr,k ¼
1
Dt ðxr,k�xr,k�1Þ ar,k ¼ €xr,k ¼

1
Dt ðvr,k�vr,k�1Þ

Second-order backward formula vr,k ¼ _xr,k ¼
1

2Dt ð3xr,k�4xr,k�1þxr,k�2Þ ar,k ¼ €xr,k ¼
1

2UDt ð3vr,k�4vr,k�1þvr,k�2Þ

First-order central formula vr,k ¼ _xr,k ¼
1

2Dt ðxr,kþ1�xr,k�1Þ ar,k ¼ €xr,k ¼
1

2Dt ðvr,kþ1�vr,k�1Þ

Second-order central formula vr,k ¼ _xr,k ¼
1

12Dt ð�xr,kþ2þ8xr,kþ1�8xr,k�1þxr,k�2Þ ar,k ¼ €xr,k ¼
1

12Dt ð�vr,kþ2þ8vr,kþ1�8vr,k�1þvr,k�2Þ
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Table 2
Numerical methods to evaluate velocity and displacement from acceleration.

Method Velocity Displacement

Mid-point rule vr,k ¼ vr,k�2þ2Dt ar,k�1 xr,k ¼ xr,k�2þ2Dt vr,k�1

Trapezoid rule vr,k ¼ vr,k�1þ
Dt
2 ðar,k�1þar,kÞ xr,k ¼ xr,k�1þ

Dt
2 ðvr,k�1þvr,kÞ

Simpson’s rule vr,k ¼ vr,k�2þ
Dt
3 ðar,k�2þ4ar,k�1þar,kÞ xr,k ¼ xr,k�2þ

Dt
3 ðvr,k�2þ4vr,k�1þvr,kÞ
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and non-proportional viscous damping models of the MAFVRO algorithms, respectively, can be obtained from the
free vibration response and solved for modal parameters. For example, if Simpson’s rule is adopted to obtain the
velocity and displacement from the acceleration as shown in Table 2, the minimum start number is k¼5 for the
displacement response matrix shown in Eq. (11) because two previous data points are required for each numerical
integration operation.

4. Implementation of MAFVRO

This section introduces the development of MATLAB program to implement the MAFVRO algorithm. Fig. 2(a) shows the
solution flow chart for the MAFVRO application program. The steps in the program are summarized as follows:
(1)
Pl
co
Define the program parameters for the MAFVRO algorithm. Set up the start number of time data k and total number of
time data Nk to be processed as revealed in Fig. 1.
(2)
 Select the analysis modes. Either the experiment or simulation can be selected. For the experiment, the measured data,
either the displacement or acceleration response, due to the free vibration should be provided. For simulation, the free
vibration simulation procedure is shown in Fig. 2(b). To perform the response simulation, define the system matrices
first, as well as the initial conditions. Then, choose the time interval Dt, i.e. the sampling frequency is as follows:

fs ¼
1

Dt
: (29)

Next, define the noise ratio (NR), which is the ratio of noise and the maximum response amplitude for emulating the
measured response containing noise as follows:

xrðtkÞ ¼MAXð9xrðtkÞ9ÞUNRURANþxrðtkÞ, (30)

where RAN is the normally distributed random number between �1 and 1; MAXð9xrðtkÞ9Þ is the maximum
displacement in simulation. Finally, the response model for either the proportional or non-proportional viscous
damping can be specified and solved for both the theoretical modal analysis and transient response analysis. The
displacement response can then be obtained and used for the MAFVRO algorithm applications. The simulated
acceleration can also be obtained such as by the Simpson’s rule as shown in Table 2.
(3)
 Define the type of sensor. Typical sensors including the displacement sensor and accelerometer can be specified.

(4)
 Obtain the system free vibration response matrices, including the displacement, velocity and acceleration as shown in

Eqs. (11)–(13). Different numerical formula can be chosen for those differential and integration methods as shown in
Tables 1 and 2.
(5)
 Start MAFVRO main program. To obtain the modal parameters from the free vibration response by choosing either the
proportional or non-proportional viscous damping model of the MAFVRO algorithms as revealed in Fig. 2(c). It is noted
here that only the rth natural frequency (ôr) and its corresponding mode shape (/̂r) can be obtained for
the proportional viscous damping model, because the normal mode analysis is assumed, i.e. /̂r is the real mode. For the
non-proportional viscous damping model, the complex mode analysis is adopted, so the equivalent natural frequency (or)
and modal damping ratio (zr) can be obtained from Eqs. (23) and (24). The mode shape vector (/r) is essentially complex.
(6)
 Results comparison. The predicted modal parameters from the MAFVRO algorithm can be compared with those from
the theoretical modal analysis (TMA) or the conventional experimental modal analysis (EMA). The prediction error for
each modal frequency is defined as follows:

er ¼
f̂ r�fr

fr
� 100%: (31)

The damping ratio prediction error is also defined similarly. In particular, the modal assurance criterion (MAC) value
between two vectors is used to evaluate the prediction effectiveness for mode shapes and given as follows:

MACð/̂r ,/sÞ ¼
j/̂T

r /sj
2

ð/̂T
r /̂
�

r Þð/
T
s /
�

s Þ
, r¼ 1,2,. . .,n, s¼ 1,2,. . .,n: (32)
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If MACð/̂r ,/sÞ¼1, the two mode shape vectors are perfectly proportional. For MACð/̂r ,/sÞ¼0, the two mode shape
vectors are truly orthogonal.
5. Results and discussions

This section will employ the developed MAFVRO algorithms for both the proportional and non-proportional viscous
damping models to obtain the structural modal parameters via simulation data. Sections 5.1 and 5.2 show the applications
of MAFVRO to the mdof systems and the beam structure, respectively.
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5.1. mdof System application

Fig. 3 shows the diagram of a n-dof system model. Table 3 summarizes the system parameters and the damping matrix
C has the similar form to the stiffness matrix K, where mi¼1 kg and ki¼1,000,000 N/m. For the proportional viscous
damping system model, the constants defined in Eq. (4) are assumed as a¼0.00001 and b¼0.00001. Table 4 shows natural
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Fig. 3. n-dof System model.

Table 3
System parameters for mdof system.

System n dofs

M m1 0 0 � � � 0

0 m2 0 . . . 0

0 0 m3 & ^

^ ^ & & 0

0 0 � � � 0 mn

2
6666664

3
7777775

n�n

K ðk1þk2Þ �k2 � � � 0 0

�k2 ðk2þk3Þ � � � 0 0

^ ^ & & ^

^ ^ & ðkn�1þknÞ �kn

0 0 � � � �kn kn

2
6666664

3
7777775

n�n

I.C. xT
0 ¼ [1;1;y;1]n�1

vT
0¼[0; 0; y ; 0]n�1

Table 4

Normal mode analysis for different dofs in proportional damping systems, mi¼1 (kg), ki¼1,000,000 (N/m), i¼1,2,y,n, a¼0.00001, b¼0.00001.

dofs Mode

1 2 3 4 5 6 7 8 9 10

(a) Natural frequency (Hz)
3 70.830 198.463 286.787 – – – – – – –

4 55.273 159.155 243.840 299.113 – – – – – –

5 45.300 132.231 208.449 267.779 305.416 – – – – –

6 38.368 112.874 180.821 238.258 281.849 309.060 – – – –

7 33.272 98.363 159.155 212.991 257.518 290.791 311.354 – – –

8 29.369 87.109 141.883 191.825 235.234 270.633 296.815 312.89 – –

9 26.285 78.140 127.864 174.099 215.585 251.191 279.945 301.063 313.969 –

10 23.787 70.830 116.291 159.154 198.463 233.337 263.000 286.787 304.168 314.754

(b) Damping ratio (%)
3 0.2225 0.6235 0.9010 – – – – – – –

4 0.1736 0.5000 0.7660 0.9397 – – – – – –

5 0.1423 0.4154 0.6549 0.8413 0.9595 – – – – –

6 0.1205 0.3546 0.5681 0.7485 0.8855 0.9709 – – – –

7 0.1045 0.3090 0.5000 0.6691 0.8090 0.9135 0.9781 – – –

8 0.0923 0.2737 0.4457 0.6026 0.7390 0.8502 0.9325 0.9830 – –

9 0.0826 0.2455 0.4017 0.5469 0.6773 0.7891 0.8795 0.9458 0.9864 –

10 0.0747 0.2225 0.3653 0.5000 0.6235 0.7331 0.8262 0.9010 0.9556 0.9888
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Table 5
Complex mode analysis for different dofs in non-proportional damping systems, mi¼1 (kg), ki¼1,000,000 (N/m), i¼1,2,y,n, c1¼20 (N s/m) ci¼0.

dofs Mode

1 2 3 4 5 6 7 8 9 10

(a) Natural frequency (Hz)
3 70.831 198.465 286.780 – – – – – – –

4 55.274 159.158 243.837 299.107 – – – – – –

5 45.300 132.233 208.450 267.774 305.412 – – – – –

6 38.368 112.870 180.823 238.257 281.844 309.057 – – – –

7 33.272 98.364 159.157 212.991 257.515 290.786 311.352 – – –

8 29.370 87.110 141.885 191.826 235.233 270.628 296.811 312.888 – –

9 26.285 78.141 127.865 174.101 215.586 251.189 279.941 301.059 313.967 –

10 23.787 70.831 116.292 159.156 198.464 233.337 262.997 286.783 304.165 314.753

(b) Damping ratio (%)
3 0.2417 0.4356 0.1938 – – – – – – –

4 0.1497 0.3333 0.2814 0.0977 – – – – – –

5 0.1014 0.2500 0.2721 0.1788 0.0554 – – – – –

6 0.0731 0.1908 0.2368 0.2026 0.1177 0.0342 – – – –

7 0.0551 0.1491 0.2000 0.1971 0.1491 0.0806 0.0225 – – –

8 0.0431 0.1191 0.1681 0.1806 0.1579 0.1109 0.0572 0.0156 – –

9 0.0345 0.0971 0.1418 0.1614 0.1544 0.1254 0.0839 0.0420 0.0112 –

10 0.0283 0.0806 0.1206 0.1429 0.1452 0.1292 0.0999 0.0646 0.0316 0.0084
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frequencies and damping ratios determined by normal mode analysis for systems with different numbers of dofs. For the
non-proportional viscous damping system model, only c1¼20(N s/m) and else ci¼0. Table 5 reveals natural frequencies
and damping ratios, as shown in Eqs. (23) and (24), respectively, determined by complex mode analysis for different dofs
systems. One can observe that there is a slight difference for natural frequencies between the proportional and non-
proportional viscous damping models, while the damping ratios are quite different for different damping models and their
assumptions. The following case studies of different dofs systems for both the proportional and non-proportional viscous
damping system models are adopted accordingly.

For the adoption of MAFVRO algorithms to obtain modal parameters via either the proportional or non-proportional
damping method, the system response matrices, including displacement, velocity and acceleration, must be formulated
first. In this paper unless noted, the second-order central formula is adopted to evaluate the velocity and acceleration for
using the displacement sensors to measure the response. For the use of accelerometers, the Simpson’s rule is adopted to
numerically obtain the velocity and displacement response from the acceleration.

Wang and Cheng [20] showed the system parameter effects of MAFVRO algorithm, including the starting data point k

and total number of time data Nk as well as the sampling frequency fs, for using the displacement sensor by the
proportional viscous damping MAFVRO method. Wang and Cheng [20] showed the prediction of natural frequencies are
exactly the same for different Nk and k, respectively, because the formulation of system response matrices as revealed in
Eqs. (11)–(13) are nearly exact solution. Therefore, different Nk and k can be flexibly chosen to formulate system matrices
and result in good predictions of natural frequencies and mode shapes. This work will mainly show the prediction by the
non-proportional viscous damping MAFVRO method and compare the performance between both models. The commonly
used accelerometers in experimental measurements for the MAFVRO application are shown additionally in this work.

Table 6 shows the prediction of modal parameters for the 10 dofs system with the non-proportional viscous damping
effect by using displacement sensor and adopting the non-proportional MAFVRO method. Table 6(a) reveals the effect of
different number of data points (Nk) for starting data point k¼5 on the modal parameter prediction. Both predicted natural
frequency errors ei and damping ratio errors are quite small and reveal the same for Nk4100, while the MACs for the
predicted mode shapes in comparison to the theoretical ones are equal to one for each mode, i.e. the perfect prediction for
mode shapes. Table 6(b) is the results for different starting data points (k), when Nk¼100. The prediction of modal
parameters is also very good. The merit of MAFVRO method is that if the system response matrices can be formulated as
accurately as possible, the prediction of modal parameters will be almost exact solutions. The selection of starting data
point (k) and the number of data points (Nk) can be flexibly chosen and result in very good prediction of modal parameters
by the MAFVRO method.

Table 7 shows the minimum sampling frequency for different numerical methods via different sensor applications by
the non-proportional viscous damping model of the MAFVRO algorithm. One can see that the natural frequency
predictions are within 2% errors for the second central formula in the displacement sensor application, when fs is
2200 Hz, i.e. the frequency ratio between the sampling frequency and the highest modal frequency is about 7.12. For the
accelerometer application, the use of Simpson’s rule can obtain accurate predictions if fs¼3800 Hz, i.e. the frequency ratio
about 12.23. The higher order of numerical methods used in obtaining the response matrices will result in better accuracy
and require the smaller sampling frequency. Table 7 suggests the required sampling frequencies as the guideline for
practical applications in using displacement sensors and accelerometers.
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Table 6
Prediction of modal parameters for the non-proportional damping system model by using displacement sensor, adopting the non-proportional MAFVRO

model, MAFVRO parameters: fs¼6000 Hz, NR¼0(%).

(a) Different number of data points (Nk), k¼5
Nk Mode 1 2 3 4 5 6 7 8 9 10

50 ei (%) 0.0079 �0.0021 1.7e�005 �0.0041 �0.0052 �0.0148 �0.0184 �0.0264 �0.0334 �0.0388

60 0.0001 �1.6e�005 �0.0008 �0.0026 �0.0062 �0.0118 �0.0189 �0.0267 �0.0338 �0.0388

75 �3.5e�006 �0.0001 �0.0007 �0.0026 �0.0062 �0.0118 �0.0189 �0.0267 �0.0338 �0.0388

100 �1.3e�006 �0.0001 �0.0007 �0.0026 �0.0062 �0.0118 �0.0189 �0.0267 �0.0338 �0.0388

200 �1.3e�006 �0.0001 �0.0007 �0.0026 �0.0062 �0.0118 �0.0189 �0.0267 �0.0338 �0.0388

300 �1.3e�006 �0.0001 �0.0007 �0.0026 �0.0062 �0.0118 �0.0189 �0.0267 �0.0338 �0.0388

400 �1.3e�006 �0.0001 �0.0007 �0.0026 �0.0062 �0.0118 �0.0189 �0.0267 �0.0338 �0.0388

500 �1.3e�006 �0.0001 �0.0007 �0.0026 �0.0062 �0.0118 �0.0189 �0.0267 �0.0338 �0.0388

600 �1.3e�006 �0.0001 �0.0007 �0.0026 �0.0062 �0.0118 �0.0189 �0.0267 �0.0338 �0.0388

1000 �1.3e�006 �0.0001 �0.0007 �0.0026 �0.0062 �0.0118 �0.0189 �0.0267 �0.0338 �0.0388

50 Damping error (%) 3.1436 0.1552 0.1131 �0.0147 �0.2143 �0.2593 �0.0487 �0.1533 �0.3184 �0.978

60 0.0307 �0.0139 �0.0038 �0.0113 �0.0266 �0.0469 �0.0761 �0.1031 �0.1365 �0.1537

75 �0.0005 �0.0003 �0.0029 �0.0103 �0.0248 �0.047 �0.0753 �0.1062 �0.1345 �0.1543

100 �4.4e�006 �0.0004 �0.0029 �0.0103 �0.0247 �0.047 �0.0753 �0.1062 �0.1344 �0.1543

200 �5.1e�006 �0.0004 �0.0029 �0.0103 �0.0247 �0.047 �0.0753 �0.1062 �0.1344 �0.1543

300 �5.1e�006 �0.0004 �0.0029 �0.0103 �0.0247 �0.047 �0.0753 �0.1062 �0.1344 �0.1543

400 �5.1e�006 �0.0004 �0.0029 �0.0103 �0.0247 �0.047 �0.0753 �0.1062 �0.1344 �0.1543

500 �5.1e�006 �0.0004 �0.0029 �0.0103 �0.0247 �0.047 �0.0753 �0.1062 �0.1344 �0.1543

600 �5.1e�006 �0.0004 �0.0029 �0.0103 �0.0247 �0.047 �0.0753 �0.1062 �0.1344 �0.1543

1000 �5.1e�006 �0.0004 �0.0029 �0.0103 �0.0247 �0.047 �0.0753 �0.1062 �0.1344 �0.1543

50 MAC 1 1 1 1 1 1 1 1 1 1

100 1 1 1 1 1 1 1 1 1 1

200 1 1 1 1 1 1 1 1 1 1

300 1 1 1 1 1 1 1 1 1 1

400 1 1 1 1 1 1 1 1 1 1

500 1 1 1 1 1 1 1 1 1 1

600 1 1 1 1 1 1 1 1 1 1

1000 1 1 1 1 1 1 1 1 1 1

(b) Different starting data points (k), Nk¼100
k Mode 1 2 3 4 5 6 7 8 9 10

5 ei (%) �1.3e�006 �0.0001 �0.0007 �0.0026 �0.0062 �0.0118 �0.0189 �0.0267 �0.0338 �0.0388

50 �1.3e�006 �0.0001 �0.0007 �0.0026 �0.0062 �0.0118 �0.0189 �0.0267 �0.0338 �0.0388

100 �1.3e�006 �0.0001 �0.0007 �0.0026 �0.0062 �0.0118 �0.0189 �0.0267 �0.0338 �0.0388

200 �1.3e�006 �0.0001 �0.0007 �0.0026 �0.0062 �0.0118 �0.0189 �0.0267 �0.0338 �0.0388

300 �1.3e�006 �0.0001 �0.0007 �0.0026 �0.0062 �0.0118 �0.0189 �0.0267 �0.0338 �0.0388

400 �1.3e�006 �0.0001 �0.0007 �0.0026 �0.0062 �0.0118 �0.0189 �0.0267 �0.0338 �0.0388

500 �1.3e�006 �0.0001 �0.0007 �0.0026 �0.0062 �0.0118 �0.0189 �0.0267 �0.0338 �0.0388

1000 �1.3e�006 �0.0001 �0.0007 �0.0026 �0.0062 �0.0118 �0.0189 �0.0267 �0.0338 �0.0388

5 Damping error (%) �4.4e�006 �0.0004 �0.0029 �0.0103 �0.0247 �0.047 �0.0753 �0.1062 �0.1344 �0.1543

50 �3.5e�006 �0.0004 �0.0029 �0.0103 �0.0247 �0.047 �0.0753 �0.1062 �0.1344 �0.1543

100 �1.4e�006 �0.0004 �0.0029 �0.0103 �0.0247 �0.047 �0.0753 �0.1062 �0.1344 �0.1543

200 �7.1e�006 �0.0004 �0.0029 �0.0103 �0.0247 �0.047 �0.0753 �0.1062 �0.1344 �0.1543

300 �5.6e�006 �0.0004 �0.0029 �0.0103 �0.0247 �0.047 �0.0753 �0.1062 �0.1344 �0.1543

400 �3.6e�006 �0.0004 �0.0029 �0.0103 �0.0247 �0.047 �0.0753 �0.1062 �0.1344 �0.1543

500 �3.9e�006 �0.0004 �0.0029 �0.0103 �0.0247 �0.047 �0.0753 �0.1062 �0.1344 �0.1543

1000 �6.1e�006 �0.0004 �0.0029 �0.0103 �0.0247 �0.047 �0.0753 �0.1062 �0.1344 �0.1543

5 MAC 1 1 1 1 1 1 1 1 1 1

50 1 1 1 1 1 1 1 1 1 1

100 1 1 1 1 1 1 1 1 1 1

200 1 1 1 1 1 1 1 1 1 1

300 1 1 1 1 1 1 1 1 1 1

400 1 1 1 1 1 1 1 1 1 1

500 1 1 1 1 1 1 1 1 1 1

1000 1 1 1 1 1 1 1 1 1 1
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Table 8 compares the prediction results from both the proportional and non-proportional models of MAFVRO
algorithms. The predicted natural frequencies are very good within 2% errors. The damping ratio predictions are also
good and can only be obtained by the non-proportional model. It is noted that the mode shape prediction is also good. The
MAC matrix between the predicted and theoretical mode shape vectors revealed perfectly the unity matrix. The MAC value
for each mode is shown to be 1 and indicates the good prediction for mode shapes.
Please cite this article as: B.-T. Wang, & D.-K. Cheng, Modal analysis by free vibration response only for discrete and
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Table 7
Effect of different numerical methods for different sensors on the predicted natural frequencies.

Type of sensor Numerical method fs fs/f6 e1 e2 e3 e4 e5 e6

Displacement sensors 1st Backward formula 7000 22.65 �0.14 �0.51 �0.72 �1.71 �1.89 �2.19

2nd Backward formula 7800 25.24 0.03 0.27 0.70 1.21 1.67 2.05

1st Central formula 5800 18.77 �0.03 �0.25 �0.64 �1.11 �1.55 �1.86

2nd Central formula 2200 7.12 0.00 �0.04 �0.23 �0.68 �1.30 �1.84

Accelerometers Mid-point rule 5500 17.80 �0.03 �0.28 �0.71 �1.23 �1.72 �2.06

Trapezoid rule 7300 23.62 0.02 0.15 0.31 �0.18 �0.34 �0.09

Simpson’s rule 3800 12.23 0.00 0.00 �0.02 �0.09 �0.76 �0.04

Note: Nk¼200, k¼50, NR¼0 (%).

Table 8
Comparison of proportional and non-proportional MAFVRO methods for a 3-dof system.

MAFVRO method Response model Predicted natural

frequency (Hz)

Freq. error (%) Predicted damping

ratio (%)

Damping ratio
error (%)

MAC

Proportional damping Proportional damping 70.8267 �0.0056 – – 1

197.8059 �0.3311 – – 1

282.8160 �1.3847 – – 1

Non-proportional damping 70.8195 �0.0168 – – 1

197.7992 �0.3358 – – 1

282.7668 �1.3994 – – 1

Non-proportional damping Proportional damping 70.8267 �0.0056 0.2225 �0.0222 1

197.8060 �0.3310 0.6154 �1.3034 1

282.8178 �1.3841 0.8524 �5.3918 1

Non-proportional damping 70.8275 �0.0056 0.2417 �0.0222 1

197.8086 �0.3311 0.4299 �1.3035 1

282.8089 �1.3848 0.1834 �5.3924 1

Note: Nk¼200, k¼50,fs¼2200 Hz, NR¼0 (%).

Table 9
Effect of noise ratio (NR) for different damping models on the predicted natural frequency errors er (%).

MAFVRO method Response model NR (%) e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

Proportional damping Proportional damping 2 0.39 �0.10 0.26 0.09 0.15 �0.03 �0.41 �0.03 �0.49 2.83
Non-proportional damping 3 0.23 0.57 0.40 0.54 0.35 0.29 0.75 1.11 1.10 2.44

Non-proportional damping Proportional damping 1 0.10 �0.05 0.02 �0.06 �0.24 �0.47 �0.89 �1.13 �1.13 0.90

Non-proportional damping 3 0.92 0.53 0.43 0.41 0.08 �0.14 �0.39 �0.48 �0.36 2.30

Note: Nk¼200, k¼50, fs¼2200 Hz.
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Table 9 shows the simulation results for considering the measurement noise effects in using displacement sensors for
different combinations of MAFVRO models and response simulation models. The maximum predicted natural frequency
errors are limited to about 2%, and the maximum tolerant NR is shown for each case study. For the 10-dof system, the
maximum tolerable NR is about 3% for the non-proportional MAFVRO model, when the non-proportional response model
is adopted. The predictions for damping ratios and mode shapes, which are not shown for brevity, are generally good and
similar to those results shown in Table 8 for the natural frequency errors within 2%.

Table 10 reveals the maximum tolerable NR values in MAFVRO applications for using different sensors by the non-
proportional MAFVRO model. In general, the MAFVRO algorithm can accommodate higher NR values for fewer dofs
system. For example, the use of displacement sensors can tolerate up to 11% NR for the 3-dof system, while there is only 3%
NR for the 10-dof system. NR values are much smaller for the accelerometer application due to twice of numerical
operations in simulations. One is the numerical differential operation on the displacement data to obtain the velocity and
acceleration responses, and another is the numerical integration operation on the acceleration data to obtain the velocity
and displacement in the MAFVRO algorithm. If the theoretical response of x, _x and €x is used for simulating the use of
accelerometers to avoid the accumulated numerical errors, the accommodated NR (%) values will be the same for both
displacement sensors and accelerometers, since the formulated system response matrices are exactly the same. In that
Please cite this article as: B.-T. Wang, & D.-K. Cheng, Modal analysis by free vibration response only for discrete and
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Table 10
Effect of different dofs on the tolerable noise ratio (NR) for different sensors on the predicted natural frequency errors er (%).

dofs NR (%) e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 eavg emax emin

(a) Displacement sensors
3 11 1.8490 0.6722 �0.2340 0.7624 1.8490 �0.2340

4 10 1.8780 2.5759 2.3880 1.5380 2.0950 2.5759 1.5380

5 8 2.0301 2.1215 1.3691 1.7045 0.8210 1.8092 2.1215 1.3691

6 6 1.0404 0.8151 1.4491 0.8207 �0.4929 �0.3446 0.5480 1.4491 �0.4929

7 5 0.7223 0.8260 0.4686 0.9278 0.0109 0.6722 2.0950 0.8175 2.0950 0.0109

8 3.5 0.6034 0.6353 0.4362 0.5213 0.0101 �0.3296 �0.3192 1.2742 0.3540 1.2742 �0.3296

9 3 0.8443 0.4097 0.3037 0.3078 0.2141 �0.2897 �0.4270 �0.0460 1.6823 0.3332 1.6823 �0.4270

10 3 0.4137 0.2757 0.2164 0.3788 0.1343 �0.2918 �0.2148 �0.8591 �0.7105 1.2498 0.0592 1.2498 �0.8591

(b) Accelerometers
3 0.4 0.2306 �1.0519 �0.1432 �0.3215 0.2306 �1.0519

4 0.3 0.0522 �1.3762 �1.9140 �1.0772 �1.0788 0.0522 �1.9140

5 0.2 �0.0534 0.0642 �0.0235 �1.9117 �2.1502 �0.8149 0.0642 �2.1502

6 0.2 �0.1298 0.1270 �1.2698 �0.1445 �4.5543 �0.3863 �1.0596 0.1270 �4.5543

7 0.1 0.5307 �0.1260 �0.1004 �0.3213 �0.1223 �0.2114 �0.8695 �0.1743 0.5307 �0.8695

8 0.1 0.0671 0.0171 �0.0119 0.0185 0.0104 �0.0440 �0.4303 �0.5533 �0.1158 0.0671 �0.5533

9 0.1 0.0192 �0.0004 �0.0051 �0.0018 0.0296 �0.0082 0.0043 �0.0839 �0.2031 �0.0277 0.0296 �0.2031

10 0.04 �0.1166 0.0214 �0.0052 �0.0360 0.0132 0.0074 �0.0115 0.0044 �0.0688 �0.6710 �0.0863 0.0214 �0.6710

Note: for (a): Nk ¼200, k¼50, fs¼2200 Hz, NR¼0 (%); for (b): Nk¼200, k¼50, fs¼3800 Hz, NR¼0 (%).

t

bL

Fig. 4. Cantilever beam diagram.

Table 11
Physical properties of the cantilever beam.

Physical properties Cantilever beam

Young’s modulus (E) 191�109 N/m2

Poisson ratio (v) 0.32

density (r) 8791 kg/m3

Length (L) 0.3 m

Width (b) 0.04 m

Height (t) 0.002 m
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case, the results in Table 10(b) will become the same as Table 10(a). Here, Table 10(b) is shown to reveal the effect of the
accumulated numerical errors.

In summary, the use of the developed MAFVRO algorithms in the mdof system application is feasible. The non-
proportional viscous damping model for the MAFVRO algorithm developed in this work is also shown to obtain the natural
frequencies, damping ratios and mode shape vectors, simultaneously, from the free vibration response only without the
prior knowledge of system matrices.
5.2. Beam structure application

A steel cantilever beam is considered. Fig. 4 shows the illustration of the beam structure and Table 11 reveals its
physical properties. The proportional viscous damping model for the beam is adopted as formulated by Wang [24] that
showed the derivation of modal analysis and transient response analysis. The beam lateral displacement response due to
the initial conditions is simulated and used as the measured data to be applied to the developed MAFVRO algorithms for
both the proportional and non-proportional models. It is noted that the lateral displacement response can be obtained
with the exact solutions for free vibration analysis under the thin beam assumptions. The velocity and acceleration of the
beam are determined by the second-order central formula as shown in Table 1.
Please cite this article as: B.-T. Wang, & D.-K. Cheng, Modal analysis by free vibration response only for discrete and
continuous systems, Journal of Sound and Vibration (2011), doi:10.1016/j.jsv.2011.03.024
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Table 12
Modal parameter prediction results for the cantilever beam by the proportional damping model of MAFVRO.

(a) Displacement sensors

Predicted natural frequencies
Mode 1 2 3 4 5

TMA 16.733 104.86 293.62 575.37 951.13

MAFVRO 16.747 104.86 293.60 575.03 947.16

Err (%) 0.083597 0.0000 �0.00681 �0.05913 �0.41915

MAC values
TMA

MAFVRO Mode_1 Mode_2 Mode_3 Mode_4 Mode_5

Mode_1 1.0000 0.0176 0.0186 0.0199 0.0208

Mode_2 0.0176 1.0000 0.0198 0.0210 0.0221

Mode_3 0.0187 0.0199 1.0000 0.0221 0.0232

Mode_4 0.0198 0.0210 0.0221 1.0000 0.0243

Mode_5 0.0210 0.0247 0.0234 0.0234 0.9999

Mode shape comparison
Mode_1 Mode_2 Mode_3 Mode_4 Mode_5

(b) Accelerometers

Predicted natural frequencies
Mode 1 2 3 4 5

TMA 16.733 104.86 293.62 575.37 951.13

MAFVRO 16.738 107.06 297.81 584.04 971.71

Err (%) 0.0298 2.0549 1.4069 1.4844 2.1179

MAC values
TMA

MAFVRO Mode_1 Mode_2 Mode_3 Mode_4 Mode_5

Mode_1 0.9998 0.0143 0.0181 0.0182 0.0202

Mode_2 0.0174 1.0000 0.0197 0.0193 0.0219

Mode_3 0.0202 0.0180 0.9973 0.0375 0.0252

Mode_4 0.0198 0.0210 0.0222 1.0000 0.0245

Mode_5 0.0192 0.0176 0.0218 0.0016 0.9591

Mode shape comparison
Mode_1 Mode_2 Mode_3 Mode_4 Mode_5

Note: Nk¼100, k¼50, fs¼8000 Hz, NR¼0 (%).
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By applying the developed MAFVRO algorithms to the beam structure, the free vibration response of the beam should
be measured at a number of points over the beam. In this study, there are 14 points along the beam length, i.e. m¼14.
Therefore, the number of dofs becomes n¼m. Tables 12(a) and (b) show the prediction results via the proportional model
of MAFVRO algorithm by using displacement sensors and accelerometers, respectively. Both the natural frequency and
mode shape predictions are very good for the first five modes. For the use of displacement sensors Table 12(a) reveals the
natural frequency prediction errors are less than 1%, while Table 12(b) for the use of accelerometers results in about 2%
Please cite this article as: B.-T. Wang, & D.-K. Cheng, Modal analysis by free vibration response only for discrete and
continuous systems, Journal of Sound and Vibration (2011), doi:10.1016/j.jsv.2011.03.024
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Table 13
Modal parameter prediction results for the cantilever beam by the non-proportional damping model of MAFVRO.

(a) Displacement sensors

Predicted natural frequencies
Mode 1 2 3 4 5
TMA 16.733 104.86 293.62 575.37 951.13
MAFVRO 16.730 104.86 293.60 575.03 947.05
Err (%) �0.017 0.0000 �0.0068 �0.059 �0.4308

Predicted modal damping ratios
Mode 1 2 3 4 5
TMA 0.00047 0.000075 0.000027 0.000013 0.0000083
MAFVRO 0.00056 0.000075 0.000020 0.000013 0.0001073
Err (%) 15 �0.78 �30 �0.47 92.2

MAC values
TMA

MAFVRO Mode_1 Mode_2 Mode_3 Mode_4 Mode_5

Mode_1 1.0000 0.0176 0.0186 0.0199 0.0208
Mode_2 0.0176 1.0000 0.0198 0.0210 0.0221
Mode_3 0.0187 0.0199 1.0000 0.0221 0.0232
Mode_4 0.0198 0.0210 0.0221 1.0000 0.0243
Mode_5 0.0209 0.0219 0.0229 0.0242 0.9999

Mode shape comparison
Mode_1 Mode_2 Mode_3 Mode_4 Mode_5

(b) Accelerometers

Predicted natural frequencies
Mode 1 2 3 4 5
TMA 16.733 104.86 293.62 575.37 951.13
MAFVRO 16.712 106.23 297.55 584.27 969.84
Err (%) �0.1256 1.2896 1.3207 1.52326 1.92918

Predicted modal damping ratios
Mode 1 2 3 4 5
TMA 0.00047 0.000075 0.000027 0.000013 0.0000083
MAFVRO 0.00705 0.000280 0.000014 0.000030 0.0016630
Err (%) 93.2580 72.8758 �83.15312 54.81394 99.49678

MAC values
TMA

MAFVRO Mode_1 Mode_2 Mode_3 Mode_4 Mode_5

Mode_1 0.9991 0.0145 0.0179 0.0182 0.0201
Mode_2 0.0177 1.0000 0.0198 0.0209 0.0221
Mode_3 0.0187 0.0198 1.0000 0.0224 0.0233
Mode_4 0.0198 0.0210 0.0221 1.0000 0.0243
Mode_5 0.0202 0.0208 0.0240 0.0234 0.9988

Mode shape comparison
Mode_1 Mode_2 Mode_3 Mode_4 Mode_5

Note: Nk¼100, k¼50, fs¼8000 Hz, NR¼0 (%).
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error. The slightly higher errors in using accelerometers are the result of accumulated numerical errors from the
differentiation and integration process in simulating the beam transient responses to formulate the system response
matrices for the MAFVRO application. The MAC matrices between the predicted and theoretical mode shapes are nearly
close to the unity matrices, i.e. the mode shapes show good comparisons and possess the orthogonal properties. The modal
parameters predictions are very good.

For the modal parameter prediction results from the non-proportional MAFVRO model as shown in Table 13(a) and (b)
by using displacement sensors and accelerometers, respectively, both natural frequencies and mode shapes also reveal
very good predictions, while the damping ratios may reveal high errors but in the reasonable range. Note that the damping
errors in Table 13(b) for the accelerometer application are larger than those in Table 13(a) for the displacement sensor is
due to the numerical operation in obtaining the simulated acceleration response as discussed in Table 10 for mdof
systems. The presented MAFVRO algorithm shows an effective way to obtain the modal parameters from the free vibration
response only without the prior knowledge of system matrices. Feeny and Liang [25] expanded the POD method [23] to the
discrete and continuous systems in random excitation; however, the requirement for a prior knowledge of the mass matrix
is its limitation. The MAFVRO algorithms for both proportional and non-proportional viscous damping models are simple
and straightforward as revealed in this work. In particular, the MAFVRO methods require no prior knowledge of system
matrices and only the free vibration transient response in determining the structural modal parameters.

6. Conclusions

This paper extends the proportional viscous damping model of the MAFVRO algorithm [20] to the non-proportional
model. Additionally, the formulation for the use of accelerometers other than the displacement sensors is provided. The
MAFVRO algorithm development is theoretically complete. The case studies for mdof systems and the beam structure are
demonstrated by simulation results. Results show that the modal data for both the discrete and continuous systems can be
well identified by the MAFVRO algorithms. The developed modal analysis methods from the free vibration response only
are promising and have the potential for practical applications. For the proportional damping model, the normal mode
analysis is assumed and thus only the natural frequencies and mode shapes can be obtained. The predicted mode shape
vector is real. For the non-proportional damping model, the complex mode analysis is adopted. The modal damping ratios
can also be obtained in addition to the natural frequencies and mode shapes. In particular, the mode shape vector is
complex and more appropriate for practical structures. This work enhances the modal analysis technique by using the free
vibration response only and shows the feasibility of the MAFVRO in practical applications for both the discrete and
continuous systems.
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