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ABSTRACT 

This paper presents the theoretical modal analysis for the use of PVDF sensor in structural modal test-
ing via finite element analysis (FEA).  A series of rectangular PVDF films are adhered on the surface of 
cantilever beam as sensors, while the point impact force is applied as the actuator for experimental modal 
analysis (EMA).  Natural frequencies and mode shapes determined from both FEA and EMA are vali-
dated.  In FEA, the beam structure is modeled by 3D solid elements, and the PVDF films are modeled by 
3D coupled field piezoelectric elements.  Both modal analysis and harmonic response analysis are per-
formed to obtain the structural modal parameters and frequency response functions, respectively.  Results 
show that both FEA and EMA results agree well.  In particular, the PVDF sensor mode shapes, propor-
tional to the slope difference between the two edges of PVDF film, are numerically and experimentally 
validated by FEA and EMA, respectively.  Therefore, the simulation of PVDF films for vibration analy-
sis in FEA can be verified and easily extended to other complex structures that may contain piezoelectric 
materials. 

Keywords : Finite element model, PVDF film, Experimental modal analysis, Vibration analysis. 

1.  INTRODUCTION 

The piezoelectric materials have been drawn many 
interests for the use as sensors and actuators.  Hubbard 
[1] introduced the rectangular shape of PVDF (Polyvi-
nylidene Fluoride) film for the application to vibration 
control of beam structures as the sensor.  Lee and 
Moon [2] and Collin et al. [3] developed special shape 
of PVDF films to sense the specific vibration modal 
response as known modal sensors.  Galea et al. [4] 
applied the PVDF film as the sensor to the structural 
fault diagnosis and health monitoring.  Collet and 
Jezequel [5] and Tanaka et al. [6] utilized the similar 
configuration of PVDF film as modal filters for vibra-
tion control.  

There have been many researches using finite ele-
ment method to analyze piezoelectric structures.  Allik 
and Hughes [7] applied the finite element method to 
analyze the three-dimensional piezoelectric vibration 
modes.  The finite element formulation included the 

piezoelectric and electroelastic effect.  A tetrahedral 
finite element was also presented based on three-   
dimensional electroelasticity.  Boucher et al. [8] de-
veloped a perturbation method to numerically determine 
the eigenmodes of vibration for piezoelectric transduc-
ers.  The three-dimensional finite element method was 
formulated to predict the piezoelectric transducer reso-
nance and antiresonance frequencies as well as sound 
radiation for different sizes of the PZT cubes.  Kunkel 
et al. [9] applied the finite element method to calculate 
the natural vibration modes of the piezoelectric ceramic 
disks.  To optimize the disk geometry, the dependence 
of the vibration mode on the disk diameter-to-thickness 
ratio was studied.  Ha et al. [10] modeled laminated 
composite structures containing distributed piezoelectric 
ceramic sensors and actuators by finite element analysis.  
The computer code was developed to analyze the   
mechanical-electrical response of the piezoelectric ce-
ramic laminated composites.  Experiments were also 
conducted to verify the computer simulations.  The 
comparisons between predicted and experimental results 
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agreed well.  There were also many researches via 
finite element analysis about piezoelectric ultrasonic 
transducers and piezoelectric transformers such as Ka-
gawa and Yamabuchi [11], Challande [12] and Tsuchiya 
and Kagawa [13]. 

The adoption of piezoelectric transducers for struc-
tural modal testing is also drawn attention.  Sun et al. 
[14] derived the frequency response function (FRF) 
through electric admittance of piezoelectric transducers 
for obtaining the dynamic parameters of beam structures.  
However, they did not physically interpret those dy-
namic parameters.  Norwood [15] successfully applied 
both the impact hammer and PVDF film as actuation 
sources, respectively, to modal testing of cylindrical 
shell structures.  Wang [16] derived the frequency re-
sponse functions between the traditional and piezoelec-
tric transducers for simply supported beam.  He intro-
duced the feasibility of the use of piezoelectric trans-
ducers for structural modal testing. 

Wang [17] generalized the formulation of frequency 
response functions (FRFs) for continuous structure sys-
tems subject to various forms of actuators and sensors.  
The actuator and sensor eigenfunctions (mode shapes) 
were respectively identified and physically interpreted 
according to the testing procedures, either roving the 
actuator or the sensor.  Wang’s work provided with the 
theoretical base for the application of smart materials, 
such as PZT actuators and PVDF sensors, to smart 
structural testing.  Wang and Wang [18] theoretically 
demonstrated the feasibility of using piezoelectric 
transducers for cantilever beam modal testing.  An 
array of finite-length PVDF films was assumed to be 
equally spaced and distributed over the beam acting as 
sensors, while a fixed pure-bending PZT actuator was 
served as actuation force.  They performed synthetic 
modal analysis to extract modal parameters of the beam 
by using piezoelectric transducers.  Wang [19] also 
applied the similar arrangement of an array of PVDF 
sensors on a cantilever beam and developed a novel 
wave number domain sensing technique for active 
structural acoustic control (ASAC).  Nevertheless, 
there have had no experimental validation yet.  There-
fore, one of the objectives for this work is to experi-
mentally verify such a sensor arrangement for structural 
testing and can lead to ASAC as well. 

This paper validates the use of PVDF film sensors for 
structural modal testing of cantilever beam by both fi-
nite element method and experimental approach.  First, 
a brief introductory of theoretical modal analysis for 
cantilever beam with distributed PVDF film sensors is 
summarized.  Second, the finite element modeling of 
the cantilever beam containing PVDF film is presented 
and solved by finite element code, ANSYS.  The ex-
perimental modal analysis by using impact hammer as 
the actuator and the distributed PVDF film as the sensor 
is then performed with the testing procedure, fixed the 
actuator and roving the sensor.  Finally, the theoretical 
and FEA simulation results are compared with those 
from experiments.  FRFs and modal parameters are 
presented to validate the finite element model.  This 
work thus leads to the simulation of PVDF sensors in-

teracted with structures in FEA and can be easily ex-
tended to other complex structures such as plates or 
shells. 

2.  THEORETICAL ANALYSIS 

This work adopts evenly distributed PVDF film sen-
sors adhered onto cantilever beam as shown in Fig. 1 for 
structural modal testing, while the point force is applied 
as the actuation source.  The arrangement and coordi-
nates of the i-th PVDF sensor and the j-th point force on 
the beam is depicted in Fig. 2.  A brief review of theo-
retical analysis for cantilever beam with distributed 
piezoelectric transducers is summarized [18].  From 
free vibration analysis, the natural frequencies and the 
corresponding displacement mode shape functions of a 
cantilever beam can be identified as follows [20]:  
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A strip of PVDF film can be applied as the sensing 
device as shown in Fig. 2.  The FRF between the 
measured voltage of the i-th PVDF sensor, Vi, and the 
force amplitude applied by the j-th point force, Fj, can 
be obtained as follows [17]: 
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Fig. 1  The arrangement of the PVDF sensors on the 

cantilever beam 
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Fig. 2  The arrangement of coordinate on the  
cantilever beam 
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,
v
n iφ  and ,

f
n jφ  represents the values of the n-th PVDF 

sensor and hammer actuator mode shape functions at the 
i-th and j-th location of the PVDF sensor and hammer 
actuator, respectively.  Wang [17] have shown that the 
testing procedure in EMA will determine the extracted 
mode shapes being actuator or sensor mode shapes.  In 
this work, the hammer actuator is fixed, and the PVDF 
sensors are roving in EMA.  Therefore, the PVDF 
sensor mode shapes will be obtained.  The PVDF 
mode shape functions are proportional to the slope 
difference between the two edges of PVDF film as 
shown in Eq. (7) and can be shown to be the mirror 
image of displacement mode shapes against the clamped 
end [18]. 

3.  FINITE ELEMENT ANALYSIS 

This section details the finite element modeling for 
the cantilever beam with distributed PVDF film sensors 

as shown in Fig. 1.  There are 15 PVDF films adhered 
on the beam.  Tables 1 and 2 show the physical prop-
erties of beam and PVDF film, respectively.  The finite 
element model consisting of steel beam and PVDF films 
is built in ANSYS software and solved.  Both modal 
analysis and harmonic response analysis are performed 
to determine the structural modal parameters and FRFs, 
respectively. 

The piezoelectric material has the mechanical-  
electrical characteristic, and there are mechanical and 
dielectric items in the piezoelectric equation.  The 
mechanical part has mechanical stress (T) and me-
chanical strain (S) parameters.  The dielectric part has 
electrical field (E) and electric displacement (D) pa-
rameters.  So, the piezoelectric equation has many 
types based on these parameters.  The e type of the 
piezoelectric equation is shown as follows [22]: 

 E
p pq q kp kT c S e E= −  (9) 

 S
i iq q ik kD e S E= + ε  (10) 

where p = q = 6, i = k = 3. 
The elastic constants of piezoelectric material can be 

expressed as follows: 
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Table 1  Physical properties of cantilever beam 

Material Steel 
Length (Lb)  0.3m 

Width (bb)  0.04m 

Thickness (tb)  0.002m 

Density (ρb)  8436kg/m3 

Young’s Modulus (Eb)  180.2 × 109N/m2 

Poisson ratio (υb)  0.322 

Table 2  Physical properties of PVDF sensor 

Material 
PVDF 

Length (Lp) 0.01m 

Width (bp) 0.04m 
Thickness (tp) 54 × 10−6m 

Density (ρb) 1800kg/m3 

Young’s Modulus (Eb) 2 × 109N/m2 

Poisson ratio (υb) 0.33 
Piezoelectric field intensity constant 

(e31, e32) 
54 × 10−3N/Vm 

Permittivity (ε) 132.81 × 10−12F/m 

Symmetric
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where c66 = 2(c11 − c12), c11 = c22, c44 = c55, c13 = c23. 
The piezoelectric stress constants can be expressed as 

follows: 
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where e31 = e32, e24 = e15. 
The permittivity constants can be expressed as fol-

lows: 
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where ε11 = ε22. 
The piezoelectric equation can then be expressed in 

matrix form as follows. 
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The developed finite element model is depicted and 
shown in Fig. 3.  There are two types of elements used 
in the model as listed in Table 3.  The SOLID 45 ele-
ment, a 3-D structural solid element, is used to construct 
the cantilever beam.  There are 8 nodes in each ele-
ment and 3 degree-of-freedom (DOF) on each node.  
The PVDF film is modeled by SOLID 5 element that 
can be used to model a 3D magnetic, thermal, electric, 
piezoelectric and structural field with coupling effects. 
In this work, the structural and piezoelectric analyses 
are employed, and thus the PVDF element has eight 
nodes with four DOFs, including three displacements 
(UX, UY, UZ) and electric voltage (VOLT), as listed in 
Table 3.  For the consideration of element compatibil-
ity, the beam is modeled by SOLID 45 element that has 
the same structural DOFs.  Therefore, there are no ro-
tational displacements involved.  Both SOLID 45 and 
SOLID 5 elements are used to model the cantilever 
beam and PVDF sensors, respectively.  There are cou-
pling effects on the interface between beam and PVDF 
sensors.   

Fix all
立體元素
solid 45

壓電元素
solid 5

電位=0Fixed all
SOLID 45

SOLID 5

V = 0

 

Fig. 3  The finite element model of the cantilever 
beam 

Table 3  Properties of element type 

Element type Model No. of 
node Degree of Freedom

Solid 45 3-D Structural Solid 8 UX, UY, UZ 

Solid 5 3-D Coupled-Field 
Solid 8 

UX, UY, UZ, 
VOLT for 

KEYOPT(1) = 3

The beam FE model without PVDF elements has 
passed the convergence test in terms of natural frequen-
cies within ±1% errors for the first four modes.  The 
same element mesh plan in beam that there are 45 divi-
sions in beam length, 4 divisions in beam width, and 1 
division in thickness is adopted.  The mesh of PVDF 
film thus complies with the beam accordingly as shown 
in Fig. 3. 

The displacement constraints of the finite element 
model are applied to those nodes at the fixed end for all 
DOFs as zero to fit the boundary conditions.  For mo-
dal analysis, there is no need to specify loading condi-
tions.  The point force with 1 N is applied at the first 
location of PVDF sensor for harmonic response analysis 
in order to determine the FRFs between each PVDF 
sensor and the point force.  The loading condition is 
simulated the same as the actual force applied in EMA 
discussed in next section.  

4.  EXPERIMENTAL MODAL ANALYSIS 

The conventional modal testing procedure is adopted 
to perform the experimental modal analysis.  Only the 
PVDF sensors are replaced instead of accelerometers.  
Figure 4 shows the substance picture for the cantilever 
beam adhered with evenly distributed PVDF sensors.  
The experimental equipment layout is also depicted and 
shown in Fig. 5.  The hammer is actuated at position 1 
and fixed to excite the structure.  The PVDF sensors 
measure the beam response.  The 4-channel FFT ana-
lyzer (SIG Lab) is used to capture the input force of the 
hammer actuator and the output voltage of PVDF sen-
sors, respectively, and calculates FRF.  Let the hammer 
actuator be fixed and the PVDF sensors be roving.  A 
column of FRFs matrix can then be measured and 
transported to computer through the SCSI interface.  
The general-purpose curve fitting software, 
ME’scopeVES, is used to extract the system modal pa-
rameters.  Natural frequencies, modal damping ratios 
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Fig. 5  Experimental equipment layout 

and PVDF mode shape functions of the beam can be 
extracted.  It is noted that the physical quantity of the 
PVDF sensor mode shape is voltage, and its physical 
meaning is proportional to the slope difference between 
the two edges of PVDF film as shown in Eq. (7). 

5.  RESULTS AND DISCUSSIONS 

This section will present and compare the results 
from theoretical, finite element and experimental 
analyses. 

5.1  Verification of Frequency Response Functions 

Figure 6 shows the typical point FRF 

i jv fα  for i=1, j = 
1, i.e. the sensing location is the same as the actuation 
one.  There are four FRF spectral lines, including ex-
perimental, synthesized, FEA and theoretical ones, in 
the plots.  Some observation and discussions are as 
follows: 

1. For the point FRFs, there correctly appear anti-  
resonance points between resonance peaks for all of 
the four FRFs as expected. 

2. The most discrepancy of FRFs as observed is be-
tween both the theoretical and experimental FRFs. 
The cause for the shift of anti-resonance points and 
the discrepancy of FRF shapes is that the theoretical 
model as described in Section 2 neglects the mass 
effect of PVDF sensor. 

3. The FRF determined from FEA with the assumption 
of modal damping ratios 0.3% for all modes appears 
quite good agreement to the experimental one except 
only a slight shift near the fifth mode.  It should also 
be noted that the PVDF mass is accounted for its ef-
fect during solution in FEA. 

4. The synthesized FRF is regenerated with the ex-
tracted modal parameters, which will be shown in the 
next section, from curve-fitting process.  That the 
synthesized FRF matches well with the experimental 
one indicates the success in the curve-fitting process. 
In summary, the resonance frequencies and the shape 

of FRFs show reasonably good agreement between the 
experimental and finite element analysis.  The bad 
agreement of theoretical FRF is mainly due to the ne-
glect of PVDF mass effect.  A refined modeling tech-
nique to include PVDF mass effect into the theoretical 
model can be desired and out of the content for this 
work. 

5.2  Verification of Modal Parameters 

Table 4 shows the comparison of natural frequencies 
obtained from theoretical, experimental and FEA results 
for the first four modes.  The error percentages be-
tween experimental and FEA are within ±2%.  On the 
other hand, the theoretical natural frequencies reveal 
slightly higher error percentage −2.86% at the first 
modes.  This can be the mass effect of PVDF sensors.  
The FEA works well in predicting the natural frequen-
cies of the beam with distributed PVDF sensors. 

The modal damping ratios extracted through the 
curve-fitting process are shown in Table 5.  The modal 
damping ratios are about 0.324% ~ 0.518%, slightly 
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Fig. 6  Frequency response functions for i = 1, j = 1 
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higher than 0.1% ~ 0.5% for steel material.  The adhe-
sion and material effect of PVDF films can contribute to 
increase the damping ratio.  It is also noted that struc-
tural damping can not be determined from theoretical or 
finite element analysis. 

Figures 7(a) and 7(d) show the first four bending 
mode shapes of the beam adhered with PVDF sensors 
from FEA.  It is interested to note that the displace-
ment mode shapes reveal as expected for cantilever 
beam characteristics.  However, the voltage output of a 
PVDF sensor is proportional to the slope difference 
between the two edges of the PVDF film as shown in Eq. 
(7).  It is also noted that fixed hammer actuator and 
roving PVDF sensors are adopted to perform the FRF 
measurement.  Therefore, the PVDF mode shapes can 
be extracted through the curve-fitting process.  The 
first four theoretical, experimental and FEA PVDF sen-
sor mode shapes of the cantilever beam are depicted in 
Figs. 8(a)~8(d).  In Fig. 8, the physical quantities of 
“amplitude” are voltages for FEA, EMA or theoretical 
solutions.  As shown in Eq. (7), ,

v
n iφ  represents the 

values of the n-th PVDF sensor mode shape functions at 
the i-th location of the PVDF sensor.  The physical 
quantity of the PVDF sensor mode shape is voltage, and 
the physical meaning of the PVDF sensor mode shape is 
proportional to the slope difference between the two 
edges of PVDF film as shown in Eq. (7).  For FEA, the 
voltage output of a PVDF sensor can be extracted from 
the PVDF element (SOLID5), although the structural 
displacement mode shapes can be as shown in Fig. 7.  
One can observe that those mode shapes agree reasona-
bly well.  The PVDF slope sensor mode shapes appear 
as the mirror image of displacement mode shape against 
the clamped end [18].  The applications of FEA and 
EMA to vibration analysis of the beam structure inte-
grated with PVDF sensors is demonstrated and shown 
promising. 

MAC (modal assurance criterion) [23] for the com-
parison among the theoretical, experimental and FEA 
mode shapes are tabulated in Tables 6(a) ~ 6(c).  Table 
6(a) shows the MAC matrix between FEA and theoreti-
cal mode shapes.  That the diagonal elements of MAC 
matrix reveal the values larger than 0.97 and close to 
one indicates very good agreement between the FEA 

Table 4  Comparison the natural frequencies of canti-
lever beam 

Natural frequency (Hz) f1 f2 f3 f4 
Experimental 16.6 107 300 587 

FEA 16.92 106.01 297.52 585.54
Error percentage 1.94% −0.93% −0.83% −0.25%

Theoretical 17.089 107.097 299.877 587.642
Error percentage −2.861% 0.091% −0.041% 0.109%

Table 5  The experimental modal damping of cantile-
ver beam 

Mode Modify damping ratio (%) 

ξ1 0.390 

ξ2 0.518 

ξ3 0.499 

ξ4 0.324 

 

(a) first bending mode 

 

(b) second bending mode 

 

(c) third bending mode 

 

(d) fourth bending mode 

Fig. 7  The PVDF sensors mode shape of the cantile-
ver beam from EMA 

and theoretical PVDF sensor mode shapes.  The off- 
diagonal elements of MAC matrix near to zero indicate 
the orthogonality of mode shapes.  Similarly, Tables 
6(b) and 6(c) show the MAC matrices for between FEA 
and experimental mode shapes and between theoretical 
and experimental mode shapes, respectively.  One can 
also observe that diagonal elements of MAC matrix are 
generally larger than 0.9, except the first mode, and the 
off-diagonal elements are near zero. 

6.  CONCLUSIONS 

This paper presents the FEA for cantilever beam ad-
hered with distributed PVDF sensors.  Both FRFs and 
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Fig. 8  The PVDF sensors mode shape of the  
cantilever beam 

Table 6  MAC matrix of mode shape 
(a) MAC matrix between FEA and theoretical mode shapes 
Mode 1 2 3 4 

1 0.97289 0.00405 0.00338 0.00031
2 0.00736 0.97177 0.00049 0.00372
3 0.00557 0.00179 0.97815 0.00002
4 0.00252 0.00600 0.00083 0.97038

(b) MAC matrix between FEA and experimental mode shapes 
Mode 1 2 3 4 

1 0.74727 0.02117 0.01756 0.05388 
2 0.04233 0.94018 0.02506 0.02582 
3 0.00445 0.01009 0.9277 0.02669 
4 0.00229 0.00466 0.00597 0.8775 

(c) MAC matrix between theoretical and experimental mode 
shapes 

Mode 1 2 3 4 
1 0.88982 0.00229 0.01054 0.06464 
2 0.01784 0.92607 0.00934 0.00281 
3 0.00241 0.00372 0.90850 0.01226 
4 0.00488 0.00498 0.00647 0.91477 

modal parameters are determined and validated via 
theoretical analysis and experimental modal testing.  
The conventional EMA procedure is adopted with the 
use of PVDF sensors and impact hammer actuator.  
The fixed actuator and roving PVDF sensor is adopted 
to EMA for measuring FRFs, and so forth structural 
modal parameters can be extracted through curve-fitting 
process.  Results show that three kinds of analysis, i.e. 
FEA, EMA and theoretical analysis, agree reasonably 
well.  In particular, the extracted mode shapes can be 
interpreted as the PVDF sensor mode shape, i.e. propor-
tional to the slope difference between two edges of the 
PVDF sensor.  The developed analysis methodology 
can be extended to other complex structures.  The idea 
of smart structural test (SST) is theoretically and ex-
perimentally demonstrated. 
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NOMENCLATURE 

 Av the area of PVDF sensor 
 bb beam width 
 cE elastic constant by fixed the electric field 
 D electric displacement of piezoelectric ma-

terial 
 E electrical field of piezoelectric material 
 e piezoelectric stress constant 
 e31, e32 piezoelectric field intensity constants 
 Eb Young’s Modulus of beam  
 Fj the j-th impact force amplitude 
 fn the n-th natural frequency of beam 
 Ib cross sectional moment of inertia of the 

beam 
 Lb beam length 
 lv the width PVDF sensor 



242   Journal of Mechanics, Vol. 22, No. 2, June 2006 

 S mechanical strain of piezoelectric material 
 T mechanical stress of piezoelectric material 
 tb beam thickness 
 tv thickness of the PVDF film 
 Vi the i-th PVDF voltage 
 

jfx  the location of the j-th hammer actuator in 
x- and y- coordinates 

 1 2,  
i iv vx x  the location of the i-th PVDF sensor in 

x-coordinate 
 αn the characteristic values 
 

i jv fα  the FRF between the voltage of the i-th 
PVDF sensor and the force amplitude of 
the j-th hammer actuator 

 ω excitation frequency 
 ωn the n-th natural frequency of beam 
 ρb beam density 
 ε the permittivity of the PVDF sensor 
 εS permittivity constant by fixed the strain 
 ξn the n-th modal damping ratio of beam 
 φn the n-th displacement mode shape of beam 
 ,

v
n iφ  the n-th PVDF mode shape function of 

beam at the i-th location of the PVDF 
sensor 

 ,
f
n jφ  the n-th hammer mode shape function of 

beam at the j-th location of the hammer 
actuator 
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