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ABSTRACT 

 This work presents a new general approach in developing the force prediction model. 

Two types of unknown forces dealt with in this study are the impact and harmonic forces. 

Theoretical background of force prediction model is extensively reviewed and categorized 

into two approaches, the direct and optimization approaches. Both approaches can also be 

further divided into the time and frequency domain methods. The structural response due to 

the unknown forces is then derived. The new approach, an optimization approach, to predict 

the force magnitude and location simultaneously is developed for both time and frequency 

domain methods. The implementation of the prediction model is also discussed. Special 

concerns about the applications to engineering problems are addressed. 
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1. INTRODUCTION 

 

Force prediction is one of interested inverse problems and important for engineering 

design and application [1]. The knowledge of the input force on structures is beneficial to the 

design and operation of the system. There are numerous examples showing the needs for the 

identification of applied forces to structures, such as the cutting forces of machine tools, 

reaction forces of engine mounts, and supporting forces of bearings [2]. In particular, the 

damage of composite structures subjected to impact forces is not easily visible; therefore, the 

prediction of the force location will cut down the effort in applying other inspection method 

all over the structures [3-7]. For rotating machines such as turbines and pumps, a direct 

measurement of excited forces due to imbalance or hydraulic flow is not practically possible. 

Vehoeven [8] used measured operational vibration data to calculate the total excitation forces 

of the rotating machine by an analytical modal analysis approach. Vyas and Wicks [9] 

presented a procedure to estimate turbine blade forces that have been a great concern in 

fatigue failure analysis. 

The force prediction problem can be sketched as shown in Figure 1. When the structure 

is subject to an unknown force, the knowledge of mathematical model to represent the 

structure and the measured response due to the unknown force is essential so as to develop the 

force prediction model for determining the force contents. In general, the force contents can 

be the magnitude, direction and location. The external forces can be categorized into three 

forms. One is the spatial variant type such as point forces and distributed forces. Another is 

the time variant type such as the impact, harmonic, periodic and random forces. The time 

history or the frequency spectra of the force may be of interest. The other is the spatial and 

time variant type such as moving forces. Laws and his coworker presented a series of studies 

for force identification of moving forces on structures [10-16]. There are many literatures 

dealt with the force identification problems for different kinds of forces. There is no general 

model suitable for all kinds of problems in practice. This work do not intend to develop a 

general model to suit any type of force but to introduce the developed methods and to propose 

a new systematic approach in force identification for arbitrary structures subject to unknown 

forces. Two types of forces, i.e. the impact and harmonic forces, will be considered.  

For impact force prediction problems, two categories of developed methods can be 

summarized as if the impactor is known or unknown. First, the impactor is generally 

presumed known in terms of size, shape, weight as well as its impact velocity. Hertzian 

contact is normally assumed during contact. Shivakumar et al. [5] considered the impactor an 
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elastic or rigid ball with the known impact velocity onto a circular composite laminate. By the 

energy-balanced and spring-mass models including contact deformation as well as bending 

and shear deformations of the laminate, they predicted the time history of the impact force. 

McMillan et al. [17] also presented a similar approach to identify the impact force and 

structural bending stresses of the circular plate due to impact. The reality of the impact 

problem is that the impactor may not be well known in prior.  

Another type of impact force prediction model does not account for the physical 

properties of the impactor but identify the impact force acting on the structure directly 

[3,4,6,7,18-31]. The interested force contents will be the amplitude, direction, location, and 

time history. Most works considered transverse normal impact to the structure and presumed 

known force locations. The force time history can then be predicted. Michaels and Pao [28] 

applied multiple Green's functions related a direction cosine of the oblique forces to 

determine the force time function and the direction cosine. Inoue et al. [25] decomposed the 

impact force into three directional components to predict its magnitude and direction. There 

are little literature dealt with the location prediction of impact force. Wu et al. [7] intended to 

identify the impact force location by comparing the reconstructed strain response among 

several candidate locations. Doyle [32] and his co-workers [33] presented the impact force 

location prediction. The basic scheme is based on the pattern match for the reconstructed 

force history. The solution of both the time history and location of impact forces are treated 

separately. Excessive computational effort will be required to solve the problem. Choi and 

Chang [34] introduced distributed piezoelectric sensors to detect the impact force time history 

and its location by comparing measured and estimated sensor outputs. Two loops in fitting 

process are involved. One is for predicting the force time history, and another is for predicting 

the force location. Turek and Kuperman [35] applied matched-field processing (MFP), a 

generalized procedure of array processing used in ocean acoustics to localize sources, to 

locate a point force on a vibrating beam without detail modeling of structures. This work will 

deal with the normal impact force on structures. With the assumption of ideal impact force, 

the amplitude and location of the impact force will be predicted simultaneously.  

Force prediction problem dealt with harmonic force excitation is also of concern. D'Cruz 

et al. [36] used Gauss-Newton method to solve the least square optimization problem that is to 

minimize the errors between the predicted and measured response for the plate subject to a 

harmonic force. The location, amplitude and phase of the harmonic force were predicted 

through numerical simulations. Karlsson [37] assumed the force spatial distribution available 

a priori and predicted the complex amplitudes of harmonic forces. Ma and Lin [38] applied 
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the Kalman filter with a recursive estimator to determine the harmonic forces of an 

equipment-isolator. Those prediction models normally assumed a prior known force location 

such that only the force amplitude and its time history were predicted. Moller [39] tentatively 

gave the spatial shape and position of the harmonic point load and applied Betti reciprocal 

theorem with a reference load case to calculate the magnitude and match the load location. 

This work will also develop the harmonic force prediction method for arbitrary structures in 

determining the force amplitude and location. 

As mentioned previously, mathematically modeling the structural system is required in 

order to predict the force contents. Theoretically modeling and experimentally modeling or 

both can be adopted. The modeling process can be treated in different points of views. First, 

either the discrete or continuous system can be adopted depending on the characteristics of the 

structures. Huang et al. [24] simplified the vibratory mill into a rigid bar with two spring 

supports for the prediction of impact forces during mill collision. Lim and Pilkey [27] adopted 

the discrete system to model a ten-bay truss structure for the identification of dynamic force 

time function. Treated structures in force prediction problem include simple structures, such 

as bar [18], beams [19-21,34,37,40-45], plates [22,23,36,46], composite laminates [3-7,47] 

and frame structures [33,48]. A theoretical model can generally be well defined and solved. 

For complex structures like engine mounts [2], rotary machines [8,9] and computer enclosures 

[49], experimental models were generally adopted. This work will consider a general 

continuous system model suitable for arbitrary structures subject to unknown force excitation. 

Second, in terms of the representation of system response the time or frequency domain 

model can be adopted. For time domain approach, the convolution integral equation that 

correlates the input force and output response can generally be formulated. While Green's 

function is mainly for the propagation wave response, impulse response function (IRF) can be 

of interest for structural vibration. For frequency domain approach, frequency response 

function (FRF) that can be obtained by theoretical modal analysis (TMA) or experimental 

modal analysis (EMA) is required. In some circumstance, the modal domain approach, i.e. the 

system is expressed in terms of modal parameters, can also be developed to determine the 

system response. Kim and Kim [50] used modal model to construct the frequency response 

function. Therefore, the inverse of FRF matrix can be easily obtained for force prediction. 

Busby and Trujillo [19] performed TMA to obtain system modal parameters and so forth to 

estimate the system response in order to find the unknown force time history. This work will 

develop both time and frequency domain methods. System response will be derived as a 

function of system modal parameters and input force parameters. Third, the solution methods 
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in resolving the system equation for the estimation of the predicted sensor response can be 

done by finite element method [39,47], state-space equation approach or dynamic 

programming [36,45,51,52], convolution and deconvolution method [3,30] and modal 

analysis [43,48,50]. This work presumes the known force function; therefore, the system 

vibrating response can be theoretically evaluated and expressed in a concise modal format. 

To measure the system response due to the force excitation is also needed for force 

prediction models. Various kinds of sensors have been used, such as strain guages [6,7,20,21], 

accelerometers [53], slope sensors [42], laser vibrometer [54] and piezoelectric sensors [34]. 

The measured system response can be characterized as the concern of either the structural 

propagation wave [6,7,20,21,55] or the structural vibration [42]. Normally, the adoption of 

different types of sensors and mathematical models as well as the solution techniques will 

result in different approaches in developing the force prediction models. This work assumes 

the use of acceleration sensor to measure the structural vibration response. Since the 

displacement response is also obtained, applying different types of sensors for the force 

prediction model can also be manipulated to adapt the developed method. 

The followings will introduce the theoretical background about force prediction 

problems in Section 2. The system analysis techniques in physical, time, frequency and modal 

domain are summarized. Force prediction models are classified into direct and optimization 

methods. The systematic development of force prediction model, which is one of the 

optimization methods, is then presented. Section 3 presents the derivation of system response 

for arbitrary structures subject to impact and harmonic force excitations. The force prediction 

models for both time and frequency domain methods can then be formulated in Section 4. 

Section 5 discusses the implementation of the developed force prediction model. 

 

2. THEORETICAL BACKGROUND IN FORCE PREDICTION 

2.1 SYSTEM ANALYSIS 

The concept of force prediction can be theoretically simple. However, the practical 

implementation of the predictive algorithms can be complex and involved complicated tasks. 

To show the basic idea of force identification, the system block diagrams in different domains 

are first sketched as shown in Figure 2 and explained. Consider the equation of motion for an 

arbitrary structure over the domain D as follows [56]: 

( )[ ] ( )[ ] ( ) ( )[ ] ( )tPftPw
t

PMtPwC
t

tPwL ,,,, 2

2

=
∂
∂

+
∂
∂

+                       (1) 
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where L ,C are linear homogeneous self-adjoint differential operators consisting of derivatives 

through 2p with respect to the spatial coordinates P but not with respect to time t, containing 

information concerning the stiffness and damping functions. )(PM  is the mass distribution 

function of the system. ),( tPf  is the general force function. ),( tPw  is the structural 

response. For simplicity, the boundary conditions are assumed homogeneous so that at every 

point on the boundaries of domain D the following equation must be satisfied 

[ ] 0),( =tPwBi ， pi ,,2,1 L=                                  (2) 

where iB  is the linear homogeneous differential operator containing derivatives normal to 

the boundary and along the boundary of order through 2p-1. The corresponding physical 

domain block diagram is sketched as shown in Figure 2(a). L, C, and M contain physical 

properties of the system, while ),( tPf  and ),( tPw  designate the physical force and 

physical coordinate response, respectively.  

The general solution of structural response in time and frequency domains will be 

derived in details later and can be expressed as follows, respectively: 

∫ −= τττ dtPhPftPw ),(),(),(                     (3) 

),(),(),( ωωω PFPHPW =                 (4) 

where ),( tPw  and ),( ωPW  denote the time and frequency response at coordinate P, 

respectively, and are Fourier transform pairs. ),( tPf  and ),( ωPF  are the input force 

functions and also Fourier transform pairs. ),( tPh  is the impulse response function (IRF) or 

Green function, and ),( ωPH  is the frequency response function (FRF). They are also 

Fourier transform pairs. Eqns. (3) and (4) satisfy the convolution theorem. The system block 

diagram for the time and frequency domains can be sketched as shown in Figure 2(b) and 2(c). 

Since the system equation can be solved by modal analysis or modal transform method, the 

modal domain block diagram can also be postulated in Figure 2(d). The system can also be 

represented by the modal parameters. )(tN k  and )(tqk  designate the k-th modal force and 

modal coordinate, respectively. 

The mathematical model can be characterized in physical, time, frequency and modal 

domains as shown in Figure 2. In physical domain, the system is expressed as the system 

equation as shown in Eq. (1) in terms of physical parameters including structural material 

properties, geometry information, boundary conditions as well as physical inputs such as 

forces. For the representation of system in time domain, the system can be expressed in terms 



IMPACT AND HARMONIC FORCE PREDICTION 

 8

of IRF or Green's function. The convolution integral relations can be obtained as shown in Eq. 

(3). To characterize the structure system in frequency domain, the FRF between the output 

and input must be determined and can be obtained from either TMA or EMA. The system 

frequency response can be expressed as shown in Eq. (4). The system can also be 

characterized in modal domain by modal parameters as shown in Figure 2(d). kω , kφ  and 

kξ  denote the k-th natural frequency, mode shape and damping ratio, respectively. The modal 

parameters can be obtained theoretically or experimentally. More details will be discussed 

later. Either one of the above to model and simulate the structure, model verification should 

be carried out to check the correctness of the mathematical model in order to be adopted for 

force prediction.  

 

2.2 FORCE PREDICTION MODELS 

For force prediction or force identification problem, the input or external force acting on 

the system is unknown. With the prior knowledge of the system, if the system response can be 

measured, the input force can be determined in either the time or frequency domain. The force 

prediction model can be categorized into two types as the following discussions. 

 

2.2.1 Direct method 

This approach is based on the fact of the frequency domain block diagram as shown in 

Figure 2(c). The schematic block diagram for the method is sketched in Figure 3. The major 

tasks can be as follows: 

(1) measure structural response ),(ˆ tPw  due to unknown force ),(ˆ tPf  

(2) take fast Fourier transform (FFT) on ),(ˆ tPw  to get ),(ˆ ωPW  

(3) measure structural frequency response function ),(ˆ ωPH  

(4) use the relation shown in Eq. (4) to obtain ),()],([),( 1 ωωω PWPHPF −=  

(5) perform inverse fast Fourier transform (IFFT) on ),( ωPF  to get ),( tPf  

For the measurement of system response in step (1), the proper selection of sensors that 

should be able to reflect the structural response due to the input force is necessary. The 

commonly used sensors include strain gauges and accelerometers as well as non-contact 

sensors like laser vibrometers. In step (2), FFT can be easily implemented by frequency 

spectrum analyzers or numerically evaluated. It is noted that proper windows must be selected 

to reduce leakages of the measured system response [57].  
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In step (3), experimental modal analysis (EMA) can be employed to obtain the structural 

FRFs by applying controlled excitation. The general form of experimentally measured FRFs 

is a matrix. From Eq. (3), in order to determine the input force the inversion of FRF matrix is 

required. The nature of FRF matrix is discrete in frequency and can be noisy due to the 

measurement noise. In step (4), the inversion operation of FRF matrix can be time-consuming 

and difficult due to the ill-conditioning matrix. There are two ways to obtain 1)],([ −ωPH . 

First, Pseudo inverse [8,40,41,43,50] and singular value decomposition (SVD) [25,37,46] 

techniques are frequently adopted to overcome the numerical difficulty for ill-conditioning 

matrices. The second approach is to apply general curve fitting algorithms to extract the 

system modal parameters, including natural frequencies, damping ratios, and mode shapes, 

from the measured FRFs. The inversion of FRF matrix can then be done by the operation of 

modal parameters. This approach is termed modal coordinate transform [43,48,50] and will 

largely reduce the computing time in the inversion operation. Therefore, the force frequency 

spectra can be obtained in step (4). If the force time function is interested, the inverse FFT can 

then be performed to get the force time history in step (5).  

This method is a general approach and suitable for any time variant input force. In 

particular, most of random input force identification problems use this approach 

[40,41,44,46,49,53,58-60]. The system modeling may not be necessary, because the system 

information can be determined from the measured FRFs. An alternative for obtaining the 

system model is to get the theoretical FRFs instead of experimentally measured ones. 

However, model verification should be properly checked so as to validate the theoretical 

model. The drawback of this method is that the location of input force must be known in prior 

for obtaining the corresponding FRFs. The correctness of the force prediction strongly relies 

on the accurate measurement of FRFs.  

It is also noted that every source of forces has an "inner mobility," because any attached 

technical source consists of masses as well as springs. Therefore only a certain part ),(ˆ tPf  

of the total generated force is acting on the structure, which is loaded by this source. Only this 

part ),(ˆ tPf  forces the measurable response ),(ˆ tPw  and is the force, which will be predicted 

with the proposed method. Measuring the structural mobility or the FRF in the frequency 

domain according to step (3), we have to secure to determine only the FRF ),(ˆ ωPH  of the 

structure. It means without the FRF of the attached source. Therefore we have to decouple this 

source for measuring the FRF. 
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2.2.2 Optimization method 

The basic idea of this method is to correlate the estimated response from the theoretical 

model and measured sensor response due to the unknown force excitation. Formulating an 

optimization problem base on the least square error method to match the estimated and 

measured response, one can solve for the unknown force inputs. Both time and frequency 

domain approaches can be adopted and detailed as follows. 

The basic scheme of the time domain optimization method is shown in Figure 4(a). The 

major procedures can be as follows: 

(1) measure structural response ),(ˆ tPw  or ),(ˆ tPa  due to unknown force ),(ˆ tPf  

(2) do structural modeling to obtain mathematical model  

(3) predict the structural response ),( tPw  or ),( tPa  

(4) formulate the optimization problem 

(5) solve the optimization problem for the input force ),( tPf  

The measurement of structural response via proper sensors in step (1) is also required. 

The main difference from the direct method is that a parallel mathematical model 

corresponding to the real structure must be constructed. The system mathematical model 

should be able to characterize the physical phenomenon of the real structure. The 

mathematical model can be characterized in the time, frequency and modal domains as shown 

in Figure 2. As discussed for time domain representation, the system response can be 

expressed in terms of IRF or Green's function. The convolution integral relations can be 

obtained as shown in Eq. (3). To characterize the structure system in frequency domain, the 

FRF between the output and input must be determined from either TMA or EMA. To 

represent the structure system in modal domain, modal parameters including natural 

frequencies, mode shapes, and damping ratios must be extracted and can be obtained 

theoretically or experimentally. Either one of the above system representation to model and 

simulate the structure can lead to different force prediction approaches. However, the 

formulation of optimization problem is conceptually the same. 

Once the mathematical model has been obtained in step (2), the system response ),( tPw  

or ),( tPa  can then be theoretically determined and expressed as a function of input force 

contents, such as the magnitude and location. As discussed, there are many solution methods 

applied to solve for the structural response in step (3). Typically, the estimated structural 

response ),( tPw  or ),( tPa  is discretized in time and can be used directly or reconstructed as 

a vector.  
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In step (4), base on the least square error method the objective of the formulated 

optimization problem is to solve for the force contents such that the estimated response has 

the best match with the measured response. The objective function can be defined as the 

square errors between the predicted and measured response.  

The general optimization algorithms, such as Gauss-Newton method [36], gradient 

projection method [6] and genetic algorithm (GA) [32,33], can be applied to resolve the 

optimization problem. Another frequently adopted method to obtain the optimum solution is 

solved by Bellman's principle of optimality [19], if the response is expressed as a state vector.  

Similarly, the frequency domain optimization method can also be developed. Figure 4(b) 

shows the schematics of this method. The major procedures can be as follows: 

(1) measure structural response ),(ˆ tPw  or ),(ˆ tPa  due to unknown force ),(ˆ tPf  

(2) take fast Fourier transform (FFT) on ),(ˆ tPw  or ),(ˆ tPa  to get  

(3) do structural modeling to obtain mathematical model  

(4) predict the structural response ),( tPw  or ),( tPa  

(5) take fast Fourier transform (FFT) on structural response to get ),( ωPW or ),( ωPA  

(6) formulate the optimization problem 

(7) solve the optimization problem for the input force ),( tPf  

This approach is nearly the same as the time domain approach except that the optimization 

problem is formulated base on the frequency domain response. FFT and IFFT procedures are 

needed to perform time and frequency transformation vice versa.  

 

3. RESPONSE ANALYSIS FOR ARBITRARY STRUCTURES 

As discussed for the optimization method in force prediction problem, the system 

response must be estimated with a proper mathematical model. This section will derive the 

system response of arbitrary structures subject to the impact and harmonic force excitation, 

respectively. Both modal analysis and response analysis will be presented. 

 

3.1 MODAL ANALYSIS 

To perform modal analysis for the arbitrary structure as shown in Eq. (1), the damping 

term and the general force function can be neglected. The solution of ),( tPw  is assumed to 

be separable in time and of the form 

( ) )()(, tqPtPw φ=                               (5) 

By the substitution of above equation into Eq. (1), one can get the following variable 
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separated equations  

0)()( 2 =+ tqtq ω&&                               (6) 

( )[ ] ( ) )(2 PPMPL φωφ =                                ( 7 ) 

The general solution of Eq. (6) can be obtained 
)()( θω −= tiQetq                                 ( 8 ) 

where Q  and θ  are some constants and represent the amplitude and phase angle, 

respectively. Eq. (7) can be observed as the eigenvalue problem consisting of the differential 

equations and must be satisfied over domain D. The eigenvalue problem of Eq. (7) can be 

solved to obtain an infinite set of natural frequencies kω  and their corresponding 

eigenfunctions )(Pkφ . If the proportional damping is assumed, and the orthonormal relations 

of eigenfunctions can be obtained as follows [56]: 

( ) ( ) ( ) ( )∫ =
D

kllk PdDPPPM δφφ                                  ( 9 ) 

( ) ( )[ ] ( )∫ =
D

klklk PdDPLP δωφφ 2                                  (10) 

( ) ( )[ ] ( )∫ =
D

klkklk PdDPCP δωξφφ 2                               (11) 

where 





=
1
0

klδ ，
lk
lk

=
≠                                              (12) 

is the Kronecker delta. kξ  is the modal damping ratio. 

 

3.2 RESPONSE ANALYSIS FOR IMPACT FORCE EXCITATION 

Assume an ideal impact force acting at jPP =  with amplitude of jF  at 0=t . The 

force function can be expressed as follows: 

( ) ( ) ( )jj PPtFtPf −= δδ,                                        (13) 

where ( )jPP −δ  is the unit impulsive function or Dirac’s delta function. From expansion 

theorem [56], the system response can be assumed  

( ) ( ) ( )∑
∞

=

=
1

,
k

kk tqPtPw φ                                       (14) 

where ( )Pkφ  is known as the structural mode shape function. ( )tqk  is called normal 

coordinates or modal coordinates. By the substitution of Eqns. (13) and (14) into Eq. (1) and 
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with the adoption of the orthonormal relations of eigenfunctions, the equation of motion can 

be simplified to an infinite set of independent differential equations as follows: 

( ) ( ) ( ) ( )tNtqtqtq kkkkkkk =++ 22 ωωξ &&& ， L,2,1=k                    (15) 

where 

( )tNk ( ) ( ) ( ) ( )∫ −=
D

jjk PdDPPtFP δδφ = ( ) ( )jkj PtF φδ                (16) 

It is noted that Eq. (15) is the modal domain equation, which corresponding system block 

diagram is shown in Figure 2(d). The solution of modal coordinate ( )tqk  in Eq. (15) can be 

derived  

   ( ) ( ) ( ) ( ) ( ) ( )









 +
++−= −∫ tqqtqedthNtq

k

k

k

kk
d

d

kkkk
dk

t
t

kkk ω
ω
ωξ

ωτττ ωξ sin00cos0
0

&
, L,2,1=k  

 (17) 

where 

teth
k

kk

k

d
t

d
k ω

ω
ωξ sin1)( −=                                        (18) 

kkdk
ωξω 21−=                                          (19) 

( ) ( ) ( ) ( ) ( )∫=
D

kk PdDPwPPMq 0,0 φ                              (20) 

( ) ( ) ( ) ( ) ( )∫=
D

kk PdDPwPPMq 0,0 && φ                              (21) 

Eq. (17), in which )(thk  is the IRF, is the convolution integral equation for modal domain. 

( )0,Pw  and ( )0,Pw&  are the initial displacement and initial velocity of the spatial coordinate 

( )tPw , . For zero initial conditions,  

( ) ( ) ( ) ( )∫ −= −−
t

d
t

k
d

k dteNtq
k

kk

k 0

sin1 ττωτ
ω

τωξ ( )
te

PF
k

kk

d

d
t

k

jkj ω
ω
φ ωξ sin−=        (22) 

By the substitution of above equation into Eq. (14), the system response at =P iP  can be 

derived: 

( ) ( ) ( )
∑
∞

=

−=
1

sin,
k

d
t

d

jjkik
i te

FPP
tPw

k

kk

k

ω
ω
φφ ωξ                         (23) 

One can also obtain the acceleration response as follows by differentiating ( )tPw i ,  with 

respect to time twice  
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( ) ( ) ( ) ( )[ ]tte
FPP

tPa
kkk

kk

k

ddkk
k

dkkk
t

d

jjkik
i ωωωξωωωξ

ω
φφ ωξ cos2sin2,

1

222 −−= ∑
∞

=

−        (24) 

Taking Fourier Transform upon the above equation, one can get acceleration frequency 

response as follows: 

( ) ( ) ( )
( ) ( )( )ωωξω

ωωξωω
φφ

ω kkk
k kkk

jjkik
i i

i
FPP

PA 2
2

, 2

1
22 −−
+−

= ∑
∞

=

                (25) 

From Equations (24) and (25), one can observe that the response is functions of system modal 

parameters as well as the amplitude and location of the impact force. 

 

3.3 RESPONSE ANALYSIS FOR HARMONIC FORCE EXCITATION 

Consider the arbitrary structure as shown in Eq. (1) and assume that a harmonic point 

force with amplitude jF  acting on jPP =  at 0=t . The force function can be expressed as 

follows:  

( ) ( ) ti
jj ePPFtPF ωδ −=,                                   (26) 

where ω  is the excitation frequency. The steady state response of the structure will also be 

harmonic. From expansion theorem, the displacement response can be assumed: 

( ) ( ) ( )∑
∞

=

=
1

,
k

kk
ti qPetPw ωφω ,                                 (27) 

By the substitution of Eqns. (26) and (27) into Eq. (1) and with the adoption of the 

orthonormal relations of eigenfunctions, the modal response can be derived as follows: 

( ) ( )
( ) ( )ωωξωω

φ
ω

kkk

jkj
k i

PF
q

222 +−
=   ， L,2,1=k                    (28) 

By the substitution of the above equation into Eq. (27), the system time domain response at 

=P iP  can be obtained 

( ) ( ) ( )
( ) ( )∑

∞

= +−
=

1
22 2

,
k kkk

ikjkjti
i i

PPF
etPw

ωωξωω
φφω                          (29) 

By differentiating the above equation twice with respect to time, one can get the acceleration 

response as follows: 

( ) ( ) ( )
( ) ( )∑

∞

= +−
−=

1
22

2

2
,

k kkk

ikjkjti
i i

PPF
etPa

ωωξωω
φφ

ω ω                        (30) 

The acceleration frequency response can also be obtained by the operation of Fourier 

Transform 
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( ) ( ) ( )
( ) ( )∑

∞

= +−
−=

1
22

2

2
,

k kkk

ikjkj
i i

PPF
PA

ωωξωω
φφ

ωω                         (31) 

Similar to Eqns. (24) and (25) the acceleration response for the impact force excitation, Eqns. 

(30) and (31) are the acceleration time and frequency domain response for the harmonic force 

excitation. 

 

4. FORCE PREDICTION FORMULATION 

This section will present the development of the new approach for the force prediction 

problem. One can observe that both the time and frequency domain response as shown in 

Eqns. (24), (25), (30) and (31) reveal a similar format for both the impact and harmonic force 

excitations. The response is functions of system modal parameters as well as the amplitude 

and location of the force. The following derivation is for the impact force prediction and can 

be easily extended to the harmonic force prediction omitted here for brevity.  

 

4.1 TIME DOMAIN METHOD 

For the proportionally damped structure as discussed subject to an unknown impact force 

excitation, the structural acceleration response at iPP =  can be measured and denoted as 

( )taiˆ . The corresponding theoretical acceleration response can be approximated and obtained 

from Eq. (24). 

( ) =tai ( ) ( )[ ]∑
=

− −−=
n

k
ddkkdkkk

t

d

jjkik
i tte

F
tPa

kkk

kk

k1

222,, cos2sin2, ωωωξωωωξ
ω
φφ ωξ      (32) 

where ik ,φ = ( )ik Pφ  represents the value of mode shape function at iP  location. Although the 

mode shape function is a continuous function of spatial coordinates, it can be approximated as 

the mode shape vector with dimension 1×m . m is the number of measurement points in 

experiments or the discretized points in numerical simulation. n is the number of modes 

considered in simulation. Therefore, ik ,φ  denotes the i-th component of the k-th mode shape 

vector. In Equation (32), ik ,φ , kω , kξ  and 
kdω , which are known as structural modal 

parameters, can be determined from experimental modal analysis (EMA) or theoretical modal 

analysis (TMA). jF  and jP , which are the amplitude and location of the impact force 

respectively, are unknown parameters to be determined. jk ,φ  is related to the force location j. 

Although all of mode shape components are known, index j designating the force location is 

unknown. 
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In order to determine the impact force amplitude and its location, the following 

optimization problem can be defined: 

Objective function:  

( ) ( )[ ]∑
=

−=
tN

r
ririt tataQ

1

2ˆ    

  ( )[ ] ( )∑ ∑
= =

−












−










−−=

t

kkk

rkk

k

N

r
ri

n

k
rddkkrdkkk

t

d

jjkik tatte
F

1

2

1

222,, ˆcos2sin2 ωωωξωωωξ
ω
φφ ωξ  (33) 

Design variables: jF , jk ,φ ,  k=1,2,…,n                          ( 34 ) 

where tQ  is defined as the sum of square errors between the theoretically estimated ( )tai  

and the experimentally measured ( )taiˆ  for tN  time steps. The objective is to find jF  and 

jk ,φ such that the objective function is zero or minimum. Therefore, the amplitude of the 

impact force jF  and a set of modal vector { }jD̂  can be obtained after the resolution of the 

optimization problem. { }jD̂  is defined as follows: 

{ }jD̂ = [ ]Tjnjj ,,2,1 φφφ L                                       (35) 

{ }jD̂  is the vector containing the j-th components of all mode shape vectors at location jP . 

The modal matrix of the structure is assumed known and can be expressed as follows: 

[ ]Φ = { } { } { }[ ]nφφφ L21  

   =
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[ ] 
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G
G

M
2

1

                                 (36) 

where 

[ ] lG = [ ]lnll ,,2,1 φφφ L ={ } T

l
D , ml ,2,1 L=                      (37) 

MAC (Modal Assurance Criterion) [57] is usually adopted to evaluate the correlation 

between the theoretical and experimental mode shape vectors. Here, jlMAC  is used to 

determine the correlation between { }jD̂  and { }lD  and defined as follows: 

{ } { }( ) { } { }

{ } { }( ){ } { }( )*
  

*

2

 

ˆˆ

ˆ
,ˆ

l
T
lj

T
j

T
l

T
j

ljjl
DDDD

DD
DDMACMAC == ,  ml ,2,1 L=           (38) 
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When jlMAC  is equal or close to 1, both { }jD̂  and { }lD  have very good correlation, i.e., 

lj PP = . Therefore, the location of impact force can be determined at lP . 

 

4.2 FREQUENCY DOMAIN METHOD 

From Equation (25), the acceleration frequency response at location iPP =  due to the 

impact force can be theoretically estimated as follows: 

( ) ( ) ( )( )ωωξω
ωωξωω

φφ
ωω kkk

n

k kkk

jjkik
ii i

i
F

PAA 2
2

,)( 2

1
22

,, −−
+−

== ∑
=

            (39) 

Let ( )ωiÂ  denote the measured acceleration frequency response. Similar to the derivation of 

the time domain method, the optimization problem can be defined as follows: 

Objective function:  

( ) ( )[ ]∑
=

−=
ω

ωωω

N

r
riri AAQ

1
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   ( ) ( )( ) ( )∑ ∑
= =
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=

ω

ωωωξω
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φφN

r
rirkkk

n

k rkkrk

jjkik Ai
i

F

1

2

22

1
222

,, ˆ2
2

       (40) 

Design variables: jF , jk ,φ ,  k=1,2,…,n                             (41) 

where ωQ  is defined as the sum of square errors between ( )ωiA  and ( )ωiÂ  for ωN  

frequency points. After the resolution of the optimization problem, the amplitude of the 

impact force jF  and a set of modal vector { }jD̂  can be obtained. Similar to the definition 

of Equation (38) jlMAC  can be obtained to determine the location of the impact force. 

 

5. IMPLEMENTATION OF FORCE PREDICTION APPLICATIONS 

 To implement the proposed force prediction model, a computer program can be 

developed with different high-level computer languages or numerical softwares. This section 

highlights the programming flow chart and those required mathematical tools. As shown in 

Figures 4(a) and 4(b), the input data for the force prediction model includes the measured 

structural response ),(ˆ tPai  or ),(ˆ ωPAi  and the representation of the mathematical model. 

The proposed method uses the system modal parameters to represent the structure, i.e. the 

modal domain modeling approach. Therefore, natural frequencies, modal damping ratios and 

mode shapes should also be the input data to the program. In order to determine the force 
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amplitude and location, the formulated optimization problems as shown in previous section 

must be solved. A general-purpose optimization solver is necessary. Most of numerical 

softwares provide with optimization tools. The prediction program requires two major tasks: 

(1) to estimate the predicted response and (2) to formulate and solve the optimization problem. 

The program flowchart is outlined in Figure 5 and briefly summarized as follows: 

1. Setup the initial guesses of design variables. The initial values of the impact force 

amplitude jF  and mode shape information nkjk ,...,2,1,, =φ  must be specified.  

2. Construct the predicted response )(tai  or )(ωiA . Sections 3.2 and 3.3 detail the 

necessary equations to predict the acceleration response in the time and frequency 

domains for both the impact and harmonic forces, respectively. 

3. Read experimentally measured response )(ˆ tai  or )(ˆ ωiA . This work assumes that the 

accelerometer is applied as the sensor located at iPP = . The acceleration response due to 

the unknown impact or harmonic force can be measured and input to the prediction 

program. 

4. Formulate the optimization problem. The objective functions as shown in Eqns. (33) and 

(40) for both the time and frequency domain methods can be formulated and expressed as 

a function of the force amplitude and location associated with mode shape components. 

5. Solve the optimization problem. The force amplitude jF  and mode shape information 

{ }jD̂  can be determined. 

6. Compare jlMAC . With the use of Eq. (38), jlMAC  value can be determined and so 

forth the force location can also be predicted. 

7. Print out the prediction results. 

 

It is noted that in solving the optimization problem several factors can affect the 

effectiveness of optimum solution. They are the number of modes, the number of 

measurement points, the selection of initial guess of design variables, the number of data 

points tN  in Eq. (33) or ωN  in Eq. (40) and the distribution of those data points. The 

number of modes n should be sufficient to reveal the characteristics of system response such 

that the predicted response can match the measured response. The number of measurement 

points m provides the spatial resolution to identify the force location. The initial guess of 

design variables should be properly selected to avoid finding the local minimum. The general 

rule in selecting the data points is that as more as data points and as wider as their distribution 
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will be beneficial to accommodate in solving for the optimum. Upon the consideration of 

solution accuracy and efficiency, the above factors may need to be justified. Besides, a robust 

optimization solver that can efficiently acquire the accurate optimal solution is needed. The 

issue can be out of content of this work. 

There can be three options based on the selection of theoretical response of )(tai  or 

)(ωiA  and the experimental response of )(ˆ tai  or )(ˆ ωiA . Both the estimated response and 

measured response in the objective functions shown in Eqns. (33) and (40) for the 

optimization problems are needed in order to predict the unknown force amplitude and 

location. The three options are tabulated in Table 1. The purpose and their applications of the 

three kinds of combinations are explained as follows: 

Option I: Use theoretical modal parameters to estimate )(tai  or )(ωiA  incorporated 

with the theoretical response to represent )(ˆ tai  or )(ˆ ωiA  instead of experimentally 

measured ones. This approach is simply numerical simulation and mainly for the validation 

of the developed force prediction methods. 

Option II: Use theoretical modal parameters to estimate )(tai  or )(ωiA  incorporated 

with the experimentally measured response )(ˆ tai  or )(ˆ ωiA . The idea of this approach can 

be applied to complex structures that are not easy or feasible to experimentally determine 

the modal parameters of the structure. The modal parameters used in Eqns. (33) and (40) 

are derived from theoretical modal analysis. 

Option III: Use the experimentally extracted modal parameters to estimate response )(tai  

or )(ωiA  incorporated with the experimentally measured response )(ˆ tai  or )(ˆ ωiA . This 

option is suitable for the case that the experimental modal parameters can be extracted 

experimentally or that the theoretical modal analysis of structures is not possible. 

The proposed method has been numerically and experimentally shown for its feasibility 

in predicting the unknown impact force acting on a beam structure subject to the impact force 

[61]. They showed that the impact force amplitude and location can be reasonably predicted. 

 

6. CONCLUSIONS 

 This work proposes a new systematic approach to predict the unknown force amplitude 

and location simultaneuosly for an arbirary structure subject to the impact and harmonic 

forces. The proposed approach can be categorized as one of the optimization method. The 

accelerometer is assumed as the sensor to detect the structural response due to the unknown 
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forces. For other types of sensors applications, the developed systematic approach is also 

suitable and can be adopted accordingly to develop the prediction method. The system 

modeling is base on continuous system formulation. The modal domain approach is adopted 

to represent the system model. Therefore, the mode shape components associated with the 

force location can be utilized to predict the force location. The developed systematic approach 

in predicting the force contents is generic. The detailed theoretical formulation of the 

prediction model is provided and useful for force prediction problems. The developed 

methodology can not only enhence the force prediction problems for arbitrary structures 

subject to unknown impact and harmonic forces but also leads to potential applications for 

other types of forces as well.  
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Table 1. Three options in evaluating the objective functions 
 
          response 
  Option 

( )tai  or ( )ωiA  ( )taiˆ  or ( )ωiÂ  

Option I Use theoretical modal parameters
to estimate the response  

( )tai  or ( )ωiA  

Use theoretical response  
( )tai  or ( )ωiA  to represent 

( )taiˆ  or ( )ωiÂ  
Option II Use theoretical modal parameters 

to estimate the response  
( )tai  or ( )ωiA  

Use experimentally measured 
response ( )taiˆ  or ( )ωiÂ  

Option III Use experimentally extracted 
modal parameters to estimate 

( )tai  or ( )ωiA  

Use experimentally measured 
response ( )taiˆ  or ( )ωiÂ  
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FIGURE LIST: 

 

Figure 1. Basic ideas of force prediction problem 

Figure 2. System block diagrams in different domains 

Figure 3. Schematics of force prediction model for direct method 

Figure 4. Schematics of force prediction model for optimization method 

Figure 5. Program flow chart 
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